9 research outputs found

    Relaxed ISS Small-Gain Theorems for Discrete-Time Systems

    Full text link
    In this paper ISS small-gain theorems for discrete-time systems are stated, which do not require input-to-state stability (ISS) of each subsystem. This approach weakens conservatism in ISS small-gain theory, and for the class of exponentially ISS systems we are able to prove that the proposed relaxed small-gain theorems are non-conservative in a sense to be made precise. The proofs of the small-gain theorems rely on the construction of a dissipative finite-step ISS Lyapunov function which is introduced in this work. Furthermore, dissipative finite-step ISS Lyapunov functions, as relaxations of ISS Lyapunov functions, are shown to be sufficient and necessary to conclude ISS of the overall system.Comment: input-to-state stability, Lyapunov methods, small-gain conditions, discrete-time non-linear systems, large-scale interconnection

    Numerical Construction of LISS Lyapunov Functions under a Small Gain Condition

    Full text link
    In the stability analysis of large-scale interconnected systems it is frequently desirable to be able to determine a decay point of the gain operator, i.e., a point whose image under the monotone operator is strictly smaller than the point itself. The set of such decay points plays a crucial role in checking, in a semi-global fashion, the local input-to-state stability of an interconnected system and in the numerical construction of a LISS Lyapunov function. We provide a homotopy algorithm that computes a decay point of a monotone op- erator. For this purpose we use a fixed point algorithm and provide a function whose fixed points correspond to decay points of the monotone operator. The advantage to an earlier algorithm is demonstrated. Furthermore an example is given which shows how to analyze a given perturbed interconnected system.Comment: 30 pages, 7 figures, 4 table

    Fortschritte in der Stabilitätsanalyse großskaliger zeitdiskreter Systeme

    No full text
    Several aspects of the stability analysis of large-scale discrete-time systems are considered. An important feature is that the right-hand side does not have have to be continuous. In particular, constructive approaches to compute Lyapunov functions are derived and applied to several system classes. For large-scale systems, which are considered as an interconnection of smaller subsystems, we derive a new class of small-gain results, which do not require the subsystems to be robust in some sense. Moreover, we do not only study sufficiency of the conditions, but rather state an assumption under which these conditions are also necessary. Moreover, gain construction methods are derived for several types of aggregation, quantifying how large a prescribed set of interconnection gains can be in order that a small-gain condition holds.Es werden großskalige zeitdiskrete Systeme betrachtet, deren rechte Seite nicht als stetig angenommen wird. Konstruktive Ansätze um Lyapunovfunktionen zu berechnen werden hergeleitet und auf mehrere Systemklassen angewandt. Für großskalige Systeme, die beschrieben sind durch die Kopplung kleinerer Systeme, wird eine neue Klasse von sogenannten Small-Gain Resultaten vorgestellt, die nicht verlangt, dass die Subsysteme robust sein müssen. Zudem untersuchen wir die Notwendigkeit der geforderten Bedingungen. Zusätzlich werden Gainkonstruktionsmethoden für verschiedene Typen von Verknüpfung hergeleitet, welche quantifizieren, wie groß eine vorgegebene Menge von Kopplungsgains sein kann, so dass eine Small-Gain-Bedingung erfüllt ist

    An Alternative Converse Lyapunov Theorem for Discrete-Time Systems

    Get PDF
    This paper presents an alternative approach for obtaining a converse Lyapunov theorem for discrete–time systems. The proposed approach is constructive, as it provides an explicit Lyapunov function. The developed converse theorem establishes existence of global Lyapunov functions for globally exponentially stable (GES) systems and semi–global practical Lyapunov functions for globally asymptotically stable systems. Furthermore, for specific classes of sys- tems, the developed converse theorem can be used to establish non–conservatism of a particular type of Lyapunov functions. Most notably, a proof that conewise linear Lyapunov functions are non–conservative for GES conewise linear systems is given and, as a by–product, tractable construction of polyhedral Lyapunov functions for linear systems is attained

    An alternative converse Lyapunov theorem for discrete-time systems

    No full text
    This paper presents an alternative approach for obtaining a converse Lyapunov theorem for discrete-time systems. The proposed approach is constructive, as it provides an explicit Lyapunov function. The developed converse theorem establishes existence of global Lyapunov functions for globally exponentially stable (GES) systems and for globally asymptotically stable systems, Lyapunov functions on a set [a,b] with 0<a<b< are derived. Furthermore, for specific classes of systems, the developed converse Lyapunov theorem can be used to establish non-conservatism of existence of a particular type of Lyapunov functions. Most notably, a proof that the existence of conewise linear Lyapunov functions is non-conservative for GES conewise linear systems is given and, as a by-product, tractable construction of polyhedral Lyapunov functions for linear systems is attained

    Integral input-to-state stability of networked control systems

    No full text
    International audienceWe investigate integral input-to-state stability (iISS) of nonlinear networked control systems (NCSs). The controller is designed by emulation, i.e. it is constructed to ensure iISS for the closed-loop system in the absence of the network. Afterwards, the latter is taken into account and explicit conditions are provided on the scheduling protocol and the maximum allowable transmission interval to preserve iISS for the NCS. The results are applied to two case studies: bilinear systems and neutrally stable linear systems under saturated feedback, where the conditions are formulated as linear matrix inequalities. The effectiveness of the results is further illustrated via a numerical example

    Nonconservative Discrete-Time ISS Small-Gain Conditions for Closed Sets

    No full text
    corecore