In this paper ISS small-gain theorems for discrete-time systems are stated,
which do not require input-to-state stability (ISS) of each subsystem. This
approach weakens conservatism in ISS small-gain theory, and for the class of
exponentially ISS systems we are able to prove that the proposed relaxed
small-gain theorems are non-conservative in a sense to be made precise. The
proofs of the small-gain theorems rely on the construction of a dissipative
finite-step ISS Lyapunov function which is introduced in this work.
Furthermore, dissipative finite-step ISS Lyapunov functions, as relaxations of
ISS Lyapunov functions, are shown to be sufficient and necessary to conclude
ISS of the overall system.Comment: input-to-state stability, Lyapunov methods, small-gain conditions,
discrete-time non-linear systems, large-scale interconnection