20 research outputs found

    GIFTS SM EDU Radiometric and Spectral Calibrations

    Get PDF
    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiance using a Fourier transform spectrometer (FTS). The GIFTS instrument gathers measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration. The calibration procedures can be subdivided into three categories: the pre-calibration stage, the calibration stage, and finally, the post-calibration stage. Detailed derivations for each stage are presented in this paper

    Radiometric Modeling and Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)Ground Based Measurement Experiment

    Get PDF
    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere s thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data collected during the moon tracking and viewing experiment events. From which, we derive the lunar surface temperature and emissivity associated with the moon viewing measurements

    GIFTS SM EDU Data Processing and Algorithms

    Get PDF
    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiances using a Fourier transform spectrometer (FTS). The GIFTS instrument employs three Focal Plane Arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration stage. The calibration procedures can be subdivided into three stages. In the pre-calibration stage, a phase correction algorithm is applied to the decimated and filtered complex interferogram. The resulting imaginary part of the spectrum contains only the noise component of the uncorrected spectrum. Additional random noise reduction can be accomplished by applying a spectral smoothing routine to the phase-corrected blackbody reference spectra. In the radiometric calibration stage, we first compute the spectral responsivity based on the previous results, from which, the calibrated ambient blackbody (ABB), hot blackbody (HBB), and scene spectra can be obtained. During the post-processing stage, we estimate the noise equivalent spectral radiance (NESR) from the calibrated ABB and HBB spectra. We then implement a correction scheme that compensates for the effect of fore-optics offsets. Finally, for off-axis pixels, the FPA off-axis effects correction is performed. To estimate the performance of the entire FPA, we developed an efficient method of generating pixel performance assessments. In addition, a random pixel selection scheme is designed based on the pixel performance evaluation

    GIFTS SM EDU Level 1B Algorithms

    Get PDF
    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) SensorModule (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiances using a Fourier transform spectrometer (FTS). The GIFTS instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the GIFTS SM EDU Level 1B algorithms involved in the calibration. The GIFTS Level 1B calibration procedures can be subdivided into four blocks. In the first block, the measured raw interferograms are first corrected for the detector nonlinearity distortion, followed by the complex filtering and decimation procedure. In the second block, a phase correction algorithm is applied to the filtered and decimated complex interferograms. The resulting imaginary part of the spectrum contains only the noise component of the uncorrected spectrum. Additional random noise reduction can be accomplished by applying a spectral smoothing routine to the phase-corrected spectrum. The phase correction and spectral smoothing operations are performed on a set of interferogram scans for both ambient and hot blackbody references. To continue with the calibration, we compute the spectral responsivity based on the previous results, from which, the calibrated ambient blackbody (ABB), hot blackbody (HBB), and scene spectra can be obtained. We now can estimate the noise equivalent spectral radiance (NESR) from the calibrated ABB and HBB spectra. The correction schemes that compensate for the fore-optics offsets and off-axis effects are also implemented. In the third block, we developed an efficient method of generating pixel performance assessments. In addition, a random pixel selection scheme is designed based on the pixel performance evaluation. Finally, in the fourth block, the single pixel algorithms are applied to the entire FPA

    Overview of the MEDLI Project

    Get PDF
    The Mars Science Laboratory Entry, Descent, and Landing Instrumentation (MEDLI) Project's objectives are to measure aerothermal environments, sub-surface heatshield material response, vehicle orientation, and atmospheric density for the atmospheric entry and descent phases of the Mars Science Laboratory (MSL) entry vehicle. The flight science objectives of MEDLI directly address the largest uncertainties in the ability to design and validate a robust Mars entry system, including aerothermal, aerodynamic and atmosphere models, and thermal protection system (TPS) design. The instrumentation suite will be installed in the heatshield of the MSL entry vehicle. The acquired data will support future Mars entry and aerocapture missions by providing measured atmospheric data to validate Mars atmosphere models and clarify the design margins for future Mars missions. MEDLI thermocouple and recession sensor data will significantly improve the understanding of aeroheating and TPS performance uncertainties for future missions. MEDLI pressure data will permit more accurate trajectory reconstruction, as well as separation of aerodynamic and atmospheric uncertainties in the hypersonic and supersonic regimes. This paper provides an overview of the project including the instrumentation design, system architecture, and expected measurement response

    Overview of the MEDLI Project

    Get PDF
    The Mars Science Laboratory Entry, Descent, and Landing Instrumentation (MEDLI) Project s objectives are to measure aerothermal environments, sub-surface heatshield material response, vehicle orientation, and atmospheric density for the atmospheric entry and descent phases of the Mars Science Laboratory (MSL) entry vehicle. The flight science objectives of MEDLI directly address the largest uncertainties in the ability to design and validate a robust Mars entry system, including aerothermal, aerodynamic and atmosphere models, and thermal protection system (TPS) design. The instrumentation suite will be installed in the heatshield of the MSL entry vehicle. The acquired data will support future Mars entry and aerocapture missions by providing measured atmospheric data to validate Mars atmosphere models and clarify the design margins for future Mars missions. MEDLI thermocouple and recession sensor data will significantly improve the understanding of aeroheating and TPS performance uncertainties for future missions. MEDLI pressure data will permit more accurate trajectory reconstruction, as well as separation of aerodynamic and atmospheric uncertainties in the hypersonic and supersonic regimes. This paper provides an overview of the project including the instrumentation design, system architecture, and expected measurement response

    Reachability and observability of linear systems over max-plus

    Get PDF
    summary:This paper discusses the properties of reachability and observability for linear systems over the max-plus algebra. Working in the event-domain, the concept of asticity is used to develop conditions for weak reachability and weak observability. In the reachability problem, residuation is used to determine if a state is reachable and to generate the required control sequence to reach it. In the observability problem, residuation is used to estimate the state. Finally, as in the continuous-variable case, a duality is shown to exist between the two properties

    Digital Signal Processing Techniques for the GIFTS SM EDU

    No full text
    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiance using a Fourier transform spectrometer (FTS). The GIFTS instrument employs three Focal Plane Arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes several digital signal processing (DSP) techniques involved in the development of the calibration model. In the first stage, the measured raw interferograms must undergo a series of processing steps that include filtering, decimation, and detector nonlinearity correction. The digital filtering is achieved by employing a linear-phase even-length FIR complex filter that is designed based on the optimum equiripple criteria. Next, the detector nonlinearity effect is compensated for using a set of pre-determined detector response characteristics. In the next stage, a phase correction algorithm is applied to the decimated interferograms. This is accomplished by first estimating the phase function from the spectral phase response of the windowed interferogram, and then correcting the entire interferogram based on the estimated phase function. In the calibration stage, we first compute the spectral responsivity based on the previous results and the ideal Planck blackbody spectra at the given temperatures, from which, the calibrated ambient blackbody (ABB), hot blackbody (HBB), and scene spectra can be obtained. In the post-calibration stage, we estimate the Noise Equivalent Spectral Radiance (NESR) from the calibrated ABB and HBB spectra. The NESR is generally considered as a measure of the instrument noise performance, and can be estimated as the standard deviation of calibrated radiance spectra from multiple scans. To obtain an estimate of the FPA performance, we developed an efficient method of generating pixel performance assessments. In addition, a random pixel selection scheme is developed based on the pixel performance evaluation. This would allow us to perform the calibration procedures on a random pixel population that is a good statistical representation of the entire FPA. The design and implementation of each individual component will be discussed in details
    corecore