129 research outputs found

    Ab initio investigation of VOSeO3, a spin gap system with coupled spin dimers

    Full text link
    Motivated by an early experimental study of VOSeO3, which suggested that it is a quasi-2D system of weakly coupled spin dimers with a small spin gap, we have investigated the electronic structure of this material via density-functional calculations. These ab initio results indicate that the system is better thought of as an alternating spin-1/2 chain with moderate interchain interactions, an analog of (VO)2P2O7. The potential interest of this system for studies in high magnetic field given the presumably small value of the spin gap is emphasized.Comment: 4 pages, 5 figure

    Evidence for Shape Co-existence at medium spin in 76Rb

    Full text link
    Four previously known rotational bands in 76Rb have been extended to moderate spins using the Gammasphere and Microball gamma ray and charged particle detector arrays and the 40Ca(40Ca,3pn) reaction at a beam energy of 165 MeV. The properties of two of the negative-parity bands can only readily be interpreted in terms of the highly successful Cranked Nilsson-Strutinsky model calculations if they have the same configuration in terms of the number of g9/2 particles, but they result from different nuclear shapes (one near-oblate and the other near-prolate). These data appear to constitute a unique example of shape co-existing structures at medium spins.Comment: Accepted for publication in Physics Letters

    Isospin symmetry in the odd-odd mirror nuclei 44V/44Sc

    Get PDF
    Excited states in the N=Z-2 nucleus 44V have been observed for the first time. The states have been identified through particle-γ-γ coincidence relationships and comparison with analog states in the mirror nucleus 44Sc. Mirror energy differences have been extracted and compared to state-of-the-art shell-model calculations which include charge-symmetry-breaking forces. Observed decay pattern asymmetries between the mirror pair are discussed in terms of core excitations, electromagnetic spin-orbit effects and isospin mixing

    Extended M1 sum rule for excited symmetric and mixed-symmetry states in nuclei

    Get PDF
    A generalized M1 sum rule for orbital magnetic dipole strength from excited symmetric states to mixed-symmetry states is considered within the proton-neutron interacting boson model of even-even nuclei. Analytic expressions for the dominant terms in the B(M1) transition rates from the first and second 2+2^+ states are derived in the U(5) and SO(6) dynamic symmetry limits of the model, and the applicability of a sum rule approach is examined at and in-between these limits. Lastly, the sum rule is applied to the new data on mixed-symmetry states of 94Mo and a quadrupole d-boson ratio nd(01+)/nd(22+)0.6nd(0^+_1)/nd(2^+_2) \approx 0.6 is obtained in a largely parameter-independent wayComment: 19 pages, 3 figures, Revte

    High-Precision Branching Ratio Measurement for the Superallowed + Emitter 74Rb

    Get PDF
    A high-precision branching-ratio measurement for the superallowed β + decay of 74Rb was performed at the TRIUMF Isotope Separator and Accelerator (ISAC) radioactive ion-beam facility. The scintillating electronpositron tagging array (SCEPTAR), composed of 10 thin plastic scintillators, was used to detect the emitted β particles; the 8π spectrometer, an array of 20 Compton-suppressed HPGe detectors, was used for detecting γ rays that were emitted following Gamow-Teller and nonanalog Fermi β + decays of 74Rb; and the Pentagonal Array of Conversion Electron Spectrometers (PACES), an array of 5 Si(Li) detectors, was employed for measuring β-delayed conversion electrons. Twenty-three excited states were identified in 74Kr following 8.241(4) × 108 detected 74Rb β decays. A total of 58 γ -ray and electron transitions were placed in the decay scheme, allowing the superallowed branching ratio to be determined as B0 = 99.545(31)%. Combined with previous half-life and Q-value measurements, the superallowed branching ratio measured in this work leads to a superallowed f t value of 3082.8(65) s. Comparisons between this superallowed f t value and the world-average-corrected Ft value, as well as the nonanalog Fermi branching ratios determined in this work, provide guidance for theoretical models of the isospin-symmetry-breaking corrections in this mass region.IS

    Spectroscopy of the N=Z-2 nucleus Cr46 and mirror energy differences

    Get PDF
    Excited states in Cr46 were sought using the C12(Ar36,2n) reaction. Gamma rays were detected with the Gammasphere array, and the Z value of the reaction products was determined with an ionization chamber located at the focal plane of the Fragment Mass Analyzer. In addition to the ground-state band observed up to IÏ€=10+ (tentatively 12+), five states are proposed to belong to the 3- band. The mirror energy differences with the analog states in Ti46 present a pronounced staggering effect between the odd and even spin members that is reproduced well by shell-model calculations incorporating the different Coulomb contributions, monopole, multipole, and single-particle effects together with an isospin-nonconserving interaction that accounts for the so-called J=2 anomaly. Dramatically different E1 decay patterns for members of the 3- band between the Cr46 and Ti46 mirrors are also observed

    Observation of 46Cr and testing and isobaric multiplet mass equation at high spin

    Get PDF
    An experimental study was carried out to observe excited states in 46Cr using the 12C(36Ar,2n) reaction with GAMMASPHERE and the FMA. The yrast band in 46Cr and the T=1 states in 46V were established up to (tentatively) 12+, the highest spin T=1 triplet unknown. The results were used to test f p-shell model calculations

    Observation of the 0+ 2 and γ bands in 98Ru, and shape coexistence in the Ru isotopes

    Get PDF
    Excited states in 98Ru were investigated using γ-ray spectroscopy following the β-decay of 98Rh, and via the 100Ru(p,t) reaction. Combining the results from the two experiments, two states were revised to have spin-parity of 4+ and subsequently assigned to the 02+ and “γ” bands, respectively. The observed structures in 98Ru are suggested to be deformed and rotational, rather than spherical and vibrational, and fit well into the systematics of these excitations in the Ru isotopes. The 02+ excitation is suggested as a shape coexisting configuration. This observation eliminates some of the last remaining candidates for nearly harmonic vibrational nuclei in the Z≈50 region. Beyond-mean-field calculations are presented that support shape coexistence throughout the Ru isotopes with N=52–62, and suggest a smooth evolution of the shape

    Establishment of M1 multipolarity of a 6.5 mu_N^2 resonance in 172-Yb at E_gamma=3.3 MeV

    Get PDF
    Two-step-cascade spectra in 172-Yb have been measured after thermal neutron capture. They are compared to calculations based on experimental values of the level density and radiative strength function (RSF) obtained from the 173-Yb(3-He,alpha gamma)172-Yb reaction. The multipolarity of a 6.5(15) mu_N^2 resonance at E_gamma=3.3(1) MeV in the RSF is determined to be M1 by this comparison.Comment: 4 pages including 3 figure

    Investigation of the role of 10^{10}Li resonances in the halo structure of 11^{11}Li through the 11^{11}Li(p, d)10^{10}Li transfer reaction

    Get PDF
    International audienceThe first measurement of the one-neutron transfer reaction 11Li(p,d)10Li performed using the IRIS facility at TRIUMF with a 5.7AMeV11Li beam interacting with a solid H2 target is reported. The 10Li residue was populated strongly as a resonance peak with energy Er=0.62 ±0.04MeV having a total width Γ\Gamma = 0.33 ±0.07MeV. The angular distribution of this resonance is characterized by neutron occupying the 1p1/2orbital. A DWBA analysis yields a spectroscopic factor of 0.67 ±0.12for p1/2 removal strength from the ground state of 11Li to the region of the peak
    corecore