6 research outputs found

    Advanced arrayed waveguide gratings: models, design strategies and experimental demonstration

    Full text link
    [EN] The present PhD thesis deals on the model, design and experimental demonstration of Arrayed Waveguide Grating (AWG) with advanced features. Firstly, building upon existing AWG formulations, design equations are provided, libraries developed and all this is experimentally validated with devices in Indium Phosphide (InP) and Silicon-on-insulator (SOI) technologies. Next, a model and experimental validation is reported for an Interleave-Chirped Arrayed Waveguide Grating (IC-AWG), which is able to process optical signals as WDM demultiplexer, polarization splitter and phase diversity component all in a single device. This device was fabricated and tested in InP technology. The second innovative AWG demonstrated in this thesis, a Reflective type (R-AWG), whose layout allows for tailoring the pass-band shape and to change the spectral resolution. A demonstration of design and fabrication for this device is provided in SOI technology. The last AWG with innovative concepts is one driven by Surface Acoustic Waves (AWG-SAW), where the spectral channels can be tuned by means of acousto-optic effect. The device was fabricated in Aluminium Gallium Arsenide (AlGaAs) technology, and measurements are provided to validate the concept and design flow. In parallel this thesis has resulted in the development of different AWG layouts for a wide number of (generic) technologies and foundries, coded into design libraries, of use in a de-facto standard software employed for the design of photonic integrated circuits. These design libraries have been licensed to the UPV spin-off company VLC Photonics S.L.[ES] La presente tesis se ha centrado en el modelado, diseño y demostración experimental del dispositivo Arrayed Waveguide Grating (AWG) con funcionalidades avanzadas. Primero, usando la formulación existente sobre AWGs se aportan ecuaciones y librerías de diseño, y se validan experimentalmente por medio de dispositivos fabricados en tecnologías de Indium Phosphide (InP) y Silicon-on-insulator (SOI). Después, se reporta un modelo y demostración experimental para un Interleave-Chirped Arrayed Waveguide Grating (IC-AWG), el cual es capaz de procesar señales ópticas como demultiplexor WDM, divisor de polarización y componente de diversidad de fase en un único dispositivo. Este dispositivo fue fabricado y probado en tecnología de InP. El segundo AWG innovador demostrado en esta tesis es de tipo Reflectante (R-AWG), cuyo diseño permite modificar la forma espectral del canal y cambiar su resolución espectral, incluyendo una demostración de diseño y fabricación de este dispositivo en tecnología de SOI. El último AWG que incluye conceptos innovadores es uno sintonizable por Acoustic Waves (AWGSAW), donde los canales espectrales pueden ser sintonizados por medio del efecto acusto-óptico. Dicho dispositivo fue fabricado en tecnología de Aluminium Gallium Arsenide (AlGaAs), y se han incluido medidas experimentales para validar el concepto y el flujo de diseño. En paralelo junto con esta tesis se han desarrollado diferentes diseños para el AWG en un amplio número de tecnologías (genéricas) y plataformas de fabricación, implementadas en unas librerías de diseño para uno de los softwares m¿as utilizados para el diseño de circuitos integrados ópticos, siendo actualmente el estándar de facto. Dichas librerías de diseño han sido licenciadas a la compañía VLC Photonics S.L., spin-off de la UPV.[CA] La present tesi ha estat centrada en el modelatge, disseny i demostració experimental del dispositiu Arrayed Waveguide Grating (AWG) amb funcionalitats avançades. Primer, usant la formulació existent sobre AWGs s'aporten equacions i llibreries de disseny, i es validen experimentalment per mitjà de dispositius fabricats en tecnologies de Indium Phosphide (InP) i Silicon-on-insulator (SOI). Després, es reporta un model i demostració experimental per a un Interleave-Chirped Arrayed Waveguide Grating (IC-AWG), el qual és capaç de processar senyals òptiques com demultiplexor WDM, divisor de polarització i component de diversitat de fase en un únic dispositiu. Aquest dispositiu va ser fabricat i provat en tecnologia de InP. El segon AWG innovador demostrat en aquesta tesi és de tipus Reflector (R-AWG), amb un disseny que permet modificar la forma espectral del canal i canviar la seua resolució espectral, incloent una demostració de disseny i fabricació d'aquest dispositiu en tecnologia de SOI. L'últim AWG que inclou conceptes innovadors és un sintonitzable per Acoustic Waves (AWG-SAW), on els canals espectrals poden ser sintonitzats per mitjà de l'efecte acusto-òptic. Aquest dispositiu va ser fabricat en tecnologia de Aluminium Gallium Arsenide (AlGaAs), i s'han inclòs mesures experimentals per validar el concepte i el flux de disseny. En paral.lel juntament amb aquesta tesi s'han desenvolupat diferents dissenys per al AWG en un ampli nombre de tecnologies (genèriques) i plataformes de fabricació, implementades en unes llibreries de disseny per a un dels programaris més utilitzats per al disseny de circuits integrats òptics, sent actualment l'estàndard de facto. Aquestes llibreries de disseny han estat llicenciades a la companyia VLC Photonics S.L., spin-off de la UPV.Gargallo Jaquotot, BA. (2016). Advanced arrayed waveguide gratings: models, design strategies and experimental demonstration [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/74646TESI

    Interleaved and Chirped Array Waveguide Grating

    Full text link
    [ES] El principal objetivo de este trabajo es el desarrollo de un modelo teórico para describir un array waveguide grating (AWG) con ligeras modi¿caciones que permiten emplearlo como un bloque fundamental en un receptor coherente homodino con diversidad en fase y polarización.[EN] The theoretical analysis of an interleaved and chirped array waveguide grating as a polarization-diversity and dual-quadrature coherent receiver is described in this document. The model describes how multiple focusing points per wavelength can be obtained through array interleaving, and with precise phase di¿erences amongst them through chirping. Finally, how the model describes the operation as hybrid and polarization diversity receiver is shown.Gargallo Jaquotot, BA. (2012). Interleaved and Chirped Array Waveguide Grating. http://hdl.handle.net/10251/27175.Archivo delegad

    Full field model for interleave-chirped arrayed waveguide gratings

    Full text link
    © 2013 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibitedIn this paper, a theoretical model for an Interleave-Chirped Arrayed Waveguide Grating (IC-AWG) is presented. The model describes the operation of the device by means of a field (amplitude and phase) transfer response. The validation of the model is accomplished by means of simulations, using parameters from previously fabricated devices. A novel design procedure is derived from the model, and it is later on employed to demonstrate the design of colorless universal IC-AWGs. The model can be readily applied to the analysis and design of future multi-wavelength optical coherent communications receivers and optical waveform analyzers.The authors acknowledge financial support by the Spanish MICINN Project TEC2010-21337, acronym ATOMIC; project FEDER UPVOV10-3E-492 and project FEDER UPVOV08-3E-008. B. Gargallo acknowledges financial support through FPI grant BES-2011-046100.Gargallo Jaquotot, BA.; Muñoz Muñoz, P. (2013). Full field model for interleave-chirped arrayed waveguide gratings. Optics Express. 21(6):6928-6942. https://doi.org/10.1364/OE.21.006928S69286942216Nagarajan, R., Kato, M., Lambert, D., Evans, P., Corzine, S., Lal, V., … Welch, D. (2012). Terabit/s class InP photonic integrated circuits. Semiconductor Science and Technology, 27(9), 094003. doi:10.1088/0268-1242/27/9/094003Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474Bachmann, M., Besse, P. A., & Melchior, H. (1994). General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 33(18), 3905. doi:10.1364/ao.33.003905Heaton, J. M., & Jenkins, R. M. (1999). General matrix theory of self-imaging in multimode interference (MMI) couplers. IEEE Photonics Technology Letters, 11(2), 212-214. doi:10.1109/68.740707Van Roey, J., van der Donk, J., & Lagasse, P. E. (1981). Beam-propagation method: analysis and assessment. Journal of the Optical Society of America, 71(7), 803. doi:10.1364/josa.71.000803Doerr, C. R., Zhang, L., & Winzer, P. J. (2011). Monolithic InP Multiwavelength Coherent Receiver Using a Chirped Arrayed Waveguide Grating. Journal of Lightwave Technology, 29(4), 536-541. doi:10.1109/jlt.2010.2097240Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587Talahashi, H., Oda, K., Toba, H., & Inoue, Y. (1995). Transmission characteristics of arrayed waveguide N×N wavelength multiplexer. Journal of Lightwave Technology, 13(3), 447-455. doi:10.1109/50.372441Wan, Y., & Hui, R. (2007). Design of WDM Cross Connect Based on Interleaved AWG (IAWG) and a Phase Shifter Array. Journal of Lightwave Technology, 25(6), 1390-1400. doi:10.1109/jlt.2007.896808Spiekman, L. H., Amersfoort, M. R., De Vreede, A. H., van Ham, F. P. G. M., Kuntze, A., Pedersen, J. W., … Smit, M. K. (1996). Design and realization of polarization independent phased array wavelength demultiplexers using different array orders for TE and TM. Journal of Lightwave Technology, 14(6), 991-995. doi:10.1109/50.511599LOHMEYER, M. (1997). Optical and Quantum Electronics, 29(9), 907-922. doi:10.1023/a:1018581701193Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370Fontaine, N. K., Scott, R. P., Zhou, L., Soares, F. M., Heritage, J. P., & Yoo, S. J. B. (2010). Real-time full-field arbitrary optical waveform measurement. Nature Photonics, 4(4), 248-254. doi:10.1038/nphoton.2010.28Bernasconi, P., Doerr, C., Dragone, C., Cappuzzo, M., Laskowski, E., & Paunescu, A. (2000). Large N x N waveguide grating routers. Journal of Lightwave Technology, 18(7), 985-991. doi:10.1109/50.85074

    Arbitrary Coupling Ratio Multimode Interference Couplers in Silicon-on-Insulator

    Full text link
    In this paper, we present the design, manufacturing, characterization, and analysis of the coupling ratio spectral response for multimode interference couplers in silicon-on-insulator (SOI) technology. The couplers were designed using a Si rib waveguide with SiO2 cladding, on a regular 220 nm film and 2 μm buried oxide SOI wafer. A set of eight different designs, three canonical and five using a widened/narrowed coupler body, have been subject of study, with coupling ratios 50:50, 85:15, and 72:28 for the former, and 95:05, 85:15, 75:25, 65:35, and 55:45 for the latter. Two wafers of devices were fabricated, using two different etch depths for the rib waveguides. A set of six dies, three per wafer, whose line metrology matched the design, were retained for characterization. The coupling ratios obtained in the experimental results match, with little deviations, the design targets for a wavelength range between 1525 and 1575 nm, as inferred from spectral measurements and statistical analyses. Excess loss for all the devices is conservatively estimated to be approximately 0.6 dB in average. All the design parameters, body width and length, input/output positions and widths, and tapers dimensions are disclosed for reference.This work was supported by the Spanish CDTI NEOTEC start-up program, the Spanish MICINN project TEC2010-21337, acronym ATOMIC, the Spanish MINECO project TEC2013-42332-P, acronym PIC4ESP, project FEDER UPVOV 10-3E-492, and project FEDER UPVOV 08-3E-008. The work of B. Gargallo was supported by FPI under Grant BES-2011-046100. The work of J.S. Fandino was supported by FPU under grant AP2010-1595.Doménech Gómez, JD.; Sánchez Fandiño, JA.; Gargallo Jaquotot, BA.; Muñoz Muñoz, P. (2014). Arbitrary Coupling Ratio Multimode Interference Couplers in Silicon-on-Insulator. Journal of Lightwave Technology. 32(14):2536-2543. https://doi.org/10.1109/JLT.2014.2329994S25362543321

    Silicon opto-electronic wavelength tracker based on an asymmetric 2x3 Mach-Zehnder Interferometer

    Full text link
    [EN] In this paper we report on the experimental demonstration of a Silicon-on-Insulator opto-electronic wavelength tracker for the optical telecommunication C-band. The device consist of a 2x3 Mach-Zehnder Interferometer (MZI) with 10 pm resolution and photo-detectors integrated on the same chip. The MZI is built interconnecting two Multimode Interference (MMI) couplers with two waveguides whose length difference is 56 mm. The first MMI has a coupling ratio of 95:05 to compensate for the propagation loss difference corresponding to the 56 mm. The wavelength tracker design provides three complementary, with 120◦ phase relations, responses. The MZI optical responses exhibit rejection as good as 15 dB, thanks to asymmetric design for the input coupler. Synchronized recorded DC electronic responses for the three photo-detector outputs reproduce the MZI de-phased characteristic, allowing for monitoring wavelength changes with sign.The authors acknowledge financial support by the Spanish CDTI NEOTEC start-up programme, the Spanish MICINN project TEC2010-21337, acronym ATOMIC, the Spanish MINECO project TEC2013-42332-P, acronym PIC4ESP, project FEDER UPVOV 10-3E-492 and project FEDER UPVOV 08-3E-008. B. Gargallo acknowledges financial support through FPI grant BES-2011-046100. J.S. Fandiño acknowledge financial support through FPU grant AP2010-1595.Doménech Gómez, JD.; Sánchez Fandiño, JA.; Gargallo Jaquotot, BA.; Baños López, R.; Muñoz Muñoz, P. (2014). Silicon opto-electronic wavelength tracker based on an asymmetric 2x3 Mach-Zehnder Interferometer. Waves. 6(1):29-34. http://hdl.handle.net/10251/56989S29346

    Acoustically driven arrayed waveguide grating

    Get PDF
    “© 2015 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited"We demonstrate compact tunable phased-array wavelength-division multiplexers driven by surface acoustic waves (SAWs) in the low GHz range. The devices comprise two couplers, which respectively split and combine the optical signal, linked by an array of single-mode waveguides (WGs). Two different layouts are presented, in which multi-mode interference couplers or free propagating regions were separately employed as couplers. The multiplexers operate on five equally distributed wavelength channels, with a spectral separation of 2 nm. A standing SAW modulates the refractive index of the arrayed WGs. Each wavelength component periodically switches paths between the output channel previously asigned by the design and the adjacent channels, at a fixed applied acoustic power. The devices were monolithically fabricated on (Al, Ga) As. A good agreement between theory and experiment is achieved.The authors thank W. Seidel, and S. Rauwerdink for preparation of the devices. This research has been supported by the international campus of excellence VLC/CAMPUS and by the program INNCIDE from the Spanish Ministry of Economy and Competitiveness (MINECO), through the program "Valoritza i Transfereix" from the Vice-Principal of Research and Scientific Policy of the Universitat de Valencia and through the program INNOVA (grant SP20120860) from the Universitat Politecnica de Valencia. Financial support by the Spanish MINECO Projects TEC2010-21337 and MAT2012-33483 is gratefully acknowledged. A. Crespo-Poveda and B. Gargallo acknowledge financial support through FPI grants BES-2010-036846 and BES-2011-046100, respectively.Crespo-Poveda, A.; Hernandez-Minguez, A.; Gargallo Jaquotot, BA.; Biermann, K.; Tahraoui, A.; Santos, PV.; Munoz, P.... (2015). Acoustically driven arrayed waveguide grating. Optics Express. 23(16):21213-21231. https://doi.org/10.1364/OE.23.021213S21213212312316Dragone, C. (1991). An N*N optical multiplexer using a planar arrangement of two star couplers. IEEE Photonics Technology Letters, 3(9), 812-815. doi:10.1109/68.84502Talahashi, H., Oda, K., Toba, H., & Inoue, Y. (1995). Transmission characteristics of arrayed waveguide N×N wavelength multiplexer. Journal of Lightwave Technology, 13(3), 447-455. doi:10.1109/50.372441Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587Paiam, M. R., & MacDonald, R. I. (1997). Design of phased-array wavelength division multiplexers using multimode interference couplers. Applied Optics, 36(21), 5097. doi:10.1364/ao.36.005097Nakamura, S., Ueno, Y., & Tajima, K. (2001). Femtosecond switching with semiconductor-optical-amplifier-based Symmetric Mach–Zehnder-type all-optical switch. Applied Physics Letters, 78(25), 3929-3931. doi:10.1063/1.1379790Wurtz, G. A., Pollard, R., Hendren, W., Wiederrecht, G. P., Gosztola, D. J., Podolskiy, V. A., & Zayats, A. V. (2011). Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature Nanotechnology, 6(2), 107-111. doi:10.1038/nnano.2010.278Li, X., Xu, H., Xiao, X., Li, Z., Yu, Y., & Yu, J. (2014). Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction. Optics Letters, 39(4), 751. doi:10.1364/ol.39.000751Ishii, M., Hibino, Y., Hanawa, F., Nakagome, H., & Kato, K. (1998). Packaging and environmental stability of thermally controlled arrayed-waveguide grating multiplexer module with thermoelectric device. Journal of Lightwave Technology, 16(2), 258-264. doi:10.1109/50.661019Watanabe, T., Ooba, N., Hayashida, S., Kurihara, T., & Imamura, S. (1998). Polymeric optical waveguide circuits formed using silicone resin. Journal of Lightwave Technology, 16(6), 1049-1055. doi:10.1109/50.681462Xiao, G. Z., Zhao, P., Sun, F. G., Lu, Z. G., Zhang, Z., & Grover, C. P. (2004). Interrogating fiber Bragg grating sensors by thermally scanning a demultiplexer based on arrayed waveguide gratings. Optics Letters, 29(19), 2222. doi:10.1364/ol.29.002222Stabile, R., Rohit, A., & Williams, K. A. (2014). Monolithically Integrated 8 × 8 Space and Wavelength Selective Cross-Connect. Journal of Lightwave Technology, 32(2), 201-207. doi:10.1109/jlt.2013.2290322Asakura, H., Hashimoto, M., Nashimoto, K., Tsuda, H., & Kudzuma, D. (2012). High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating. Electronics Letters, 48(16), 1009-1010. doi:10.1049/el.2012.1292Gorecki, C., Chollet, F., Bonnotte, E., & Kawakatsu, H. (1997). Silicon-based integrated interferometer with phase modulation driven by surface acoustic waves. Optics Letters, 22(23), 1784. doi:10.1364/ol.22.001784De Lima, M. M., Beck, M., Hey, R., & Santos, P. V. (2006). Compact Mach-Zehnder acousto-optic modulator. Applied Physics Letters, 89(12), 121104. doi:10.1063/1.2354411Beck, M., de Lima, M. M., Wiebicke, E., Seidel, W., Hey, R., & Santos, P. V. (2007). Acousto-optical multiple interference switches. Applied Physics Letters, 91(6), 061118. doi:10.1063/1.2768889Beck, M., de Lima, M. M., & Santos, P. V. (2008). Acousto-optical multiple interference devices. Journal of Applied Physics, 103(1), 014505. doi:10.1063/1.2821306Crespo-Poveda, A., Hey, R., Biermann, K., Tahraoui, A., Santos, P. V., Gargallo, B., … de Lima, M. M. (2013). Synchronized photonic modulators driven by surface acoustic waves. Optics Express, 21(18), 21669. doi:10.1364/oe.21.021669Lima, M. M. de, & Santos, P. V. (2005). Modulation of photonic structures by surface acoustic waves. Reports on Progress in Physics, 68(7), 1639-1701. doi:10.1088/0034-4885/68/7/r02Lagali, N. S., Paiam, M. R., & MacDonald, R. I. (1999). Theory of variable-ratio power splitters using multimode interference couplers. IEEE Photonics Technology Letters, 11(6), 665-667. doi:10.1109/68.766778Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474Hill, M. T., Leijtens, X. J. M., Khoe, G. D., & Smit, M. K. (2003). Optimizing imbalance and loss in 2 x 2 3-db multimode interference couplers via access waveguide width. Journal of Lightwave Technology, 21(10), 2305-2313. doi:10.1109/jlt.2003.818164Marcuse, D. (1978). Length optimization of an S-shaped transition between offset optical waveguides. Applied Optics, 17(5), 763. doi:10.1364/ao.17.000763De Lima, M. M., Alsina, F., Seidel, W., & Santos, P. V. (2003). Focusing of surface-acoustic-wave fields on (100) GaAs surfaces. Journal of Applied Physics, 94(12), 7848. doi:10.1063/1.162541
    corecore