43 research outputs found

    Single-channel bimodal interferometric sensor using subwavelength structures

    Full text link
    © 2019 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.[EN] A novel configuration of photonic sensors based on a single-channel bimodal interferometer is proposed. The design consists of a subwavelength grating (SWG) periodic structure supporting two dispersive TE-like modes that interfere at the output to create fringes in the transmission spectrum. Dispersion relations of the bimodal periodic structures have been computed in order to study the sensing performance, obtaining a theoretical bulk sensitivity of ~1300nm/RIU and a surface sensitivity of ~6.1nm/nm. Finite-Difference Time Domain (FDTD) analysis has been also carried out in order to confirm the previously obtained sensitivity results, thus showing a perfect agreement between theoretical modelling and simulation.European Commission through the Horizon 2020 Programme (PHC-634013 PHOCNOSIS project).Torrijos-Morán, L.; García-Rupérez, J. (2019). Single-channel bimodal interferometric sensor using subwavelength structures. Optics Express. 27(6):8168-8179. https://doi.org/10.1364/OE.27.008168S81688179276Topol’ančik, J., Bhattacharya, P., Sabarinathan, J., & Yu, P.-C. (2003). Fluid detection with photonic crystal-based multichannel waveguides. Applied Physics Letters, 82(8), 1143-1145. doi:10.1063/1.1554772Joannopoulos, J. D., Villeneuve, P. R., & Fan, S. (1997). Photonic crystals: putting a new twist on light. Nature, 386(6621), 143-149. doi:10.1038/386143a0Soljačić, M., Johnson, S. G., Fan, S., Ibanescu, M., Ippen, E., & Joannopoulos, J. D. (2002). Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. Journal of the Optical Society of America B, 19(9), 2052. doi:10.1364/josab.19.002052Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145Chow, E., Grot, A., Mirkarimi, L. W., Sigalas, M., & Girolami, G. (2004). Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Optics Letters, 29(10), 1093. doi:10.1364/ol.29.001093Skivesen, N., Têtu, A., Kristensen, M., Kjems, J., Frandsen, L. H., & Borel, P. I. (2007). Photonic-crystal waveguide biosensor. Optics Express, 15(6), 3169. doi:10.1364/oe.15.003169Castelló, J. G., Toccafondo, V., Pérez-Millán, P., Losilla, N. S., Cruz, J. L., Andrés, M. V., & García-Rupérez, J. (2011). Real-time and low-cost sensing technique based on photonic bandgap structures. Optics Letters, 36(14), 2707. doi:10.1364/ol.36.002707Cheben, P., Halir, R., Schmid, J. H., Atwater, H. A., & Smith, D. R. (2018). Subwavelength integrated photonics. Nature, 560(7720), 565-572. doi:10.1038/s41586-018-0421-7Halir, R., Cheben, P., Luque‐González, J. M., Sarmiento‐Merenguel, J. D., Schmid, J. H., Wangüemert‐Pérez, G., … Molina‐Fernández, Í. (2016). Ultra‐broadband nanophotonic beamsplitter using an anisotropic sub‐wavelength metamaterial. Laser & Photonics Reviews, 10(6), 1039-1046. doi:10.1002/lpor.201600213Benedikovic, D., Berciano, M., Alonso-Ramos, C., Le Roux, X., Cassan, E., Marris-Morini, D., & Vivien, L. (2017). Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths. Optics Express, 25(16), 19468. doi:10.1364/oe.25.019468Luque-González, J. M., Herrero-Bermello, A., Ortega-Moñux, A., Molina-Fernández, Í., Velasco, A. V., Cheben, P., … Halir, R. (2018). Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides. Optics Letters, 43(19), 4691. doi:10.1364/ol.43.004691Flueckiger, J., Schmidt, S., Donzella, V., Sherwali, A., Ratner, D. M., Chrostowski, L., & Cheung, K. C. (2016). Sub-wavelength grating for enhanced ring resonator biosensor. Optics Express, 24(14), 15672. doi:10.1364/oe.24.015672Gonzalo Wangüemert-Pérez, J., Cheben, P., Ortega-Moñux, A., Alonso-Ramos, C., Pérez-Galacho, D., Halir, R., … Schmid, J. H. (2014). Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator. Optics Letters, 39(15), 4442. doi:10.1364/ol.39.004442Wangüemert-Pérez, J. G., Hadij-ElHouati, A., Sánchez-Postigo, A., Leuermann, J., Xu, D.-X., Cheben, P., … Molina-Fernández, Í. (2019). [INVITED] Subwavelength structures for silicon photonics biosensing. Optics & Laser Technology, 109, 437-448. doi:10.1016/j.optlastec.2018.07.071Kozma, P., Kehl, F., Ehrentreich-Förster, E., Stamm, C., & Bier, F. F. (2014). Integrated planar optical waveguide interferometer biosensors: A comparative review. Biosensors and Bioelectronics, 58, 287-307. doi:10.1016/j.bios.2014.02.049Liu, Q., Tu, X., Kim, K. W., Kee, J. S., Shin, Y., Han, K., … Park, M. K. (2013). Highly sensitive Mach–Zehnder interferometer biosensor based on silicon nitride slot waveguide. Sensors and Actuators B: Chemical, 188, 681-688. doi:10.1016/j.snb.2013.07.053Sarkar, D., Gunda, N. S. K., Jamal, I., & Mitra, S. K. (2014). Optical biosensors with an integrated Mach-Zehnder Interferometer for detection of Listeria monocytogenes. Biomedical Microdevices, 16(4), 509-520. doi:10.1007/s10544-014-9853-5Levy, R., & Ruschin, S. (2008). Critical sensitivity in hetero-modal interferometric sensor using spectral interrogation. Optics Express, 16(25), 20516. doi:10.1364/oe.16.020516Levy, R., Ruschin, S., & Goldring, D. (2009). Critical sensitivity effect in an interferometer sensor. Optics Letters, 34(19), 3023. doi:10.1364/ol.34.003023Levy, R., & Ruschin, S. (2009). Design of a Single-Channel Modal Interferometer Waveguide Sensor. IEEE Sensors Journal, 9(2), 146-1. doi:10.1109/jsen.2008.2011075Zinoviev, K. E., Gonzalez-Guerrero, A. B., Dominguez, C., & Lechuga, L. M. (2011). Integrated Bimodal Waveguide Interferometric Biosensor for Label-Free Analysis. Journal of Lightwave Technology, 29(13), 1926-1930. doi:10.1109/jlt.2011.2150734Duval, D., González-Guerrero, A. B., Dante, S., Osmond, J., Monge, R., Fernández, L. J., … Lechuga, L. M. (2012). Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers. Lab on a Chip, 12(11), 1987. doi:10.1039/c2lc40054eHuertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162Huertas, C. S., Domínguez-Zotes, S., & Lechuga, L. M. (2017). Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor. Scientific Reports, 7(1). doi:10.1038/srep41368Bock, P. J., Cheben, P., Schmid, J. H., Lapointe, J., Delâge, A., Janz, S., … Hall, T. J. (2010). Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide. Optics Express, 18(19), 20251. doi:10.1364/oe.18.020251Johnson, S., & Joannopoulos, J. (2001). Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 8(3), 173. doi:10.1364/oe.8.000173Zhang, W., Serna, S., Le Roux, X., Vivien, L., & Cassan, E. (2016). Highly sensitive refractive index sensing by fast detuning the critical coupling condition of slot waveguide ring resonators. Optics Letters, 41(3), 532. doi:10.1364/ol.41.000532Fernández Gavela, A., Grajales García, D., Ramirez, J., & Lechuga, L. (2016). Last Advances in Silicon-Based Optical Biosensors. Sensors, 16(3), 285. doi:10.3390/s16030285Luan, E., Yun, H., Laplatine, L., Dattner, Y., Ratner, D. M., Cheung, K. C., & Chrostowski, L. (2019). Enhanced Sensitivity of Subwavelength Multibox Waveguide Microring Resonator Label-Free Biosensors. IEEE Journal of Selected Topics in Quantum Electronics, 25(3), 1-11. doi:10.1109/jstqe.2018.282184

    Subwavelength grating bimodal waveguide for refractive index sensing

    Full text link
    [EN] Periodic subwavelength structures supporting two TE modes are presented as high performance sensors with bulk and surface sensitivities of 1375.5nm/RIU and 6.138nm/nm, respectively. A complete theoretical study is provided by numerical expressions and FDTD simulations.Torrijos-Morán, L.; García-Rupérez, J. (2019). Subwavelength grating bimodal waveguide for refractive index sensing. OSA Publishing. 1-2. http://hdl.handle.net/10251/177803S1

    Commercial polycarbonate track-etched membranes as substrates for low-cost optical sensors

    Full text link
    [EN] Porous materials have become one of the best options for the development of optical sensors, since they maximize the interaction between the optical field and the target substances, which boosts the sensitivity. In this work, we propose the use of a readily available mesoporous material for the development of such sensors: commercial polycarbonate track-etched membranes. In order to demonstrate their utility for this purpose, we firstly characterized their optical response in the near-infrared range. This response is an interference fringe pattern, characteristic of a Fabry¿Pérot interferometer, which is an optical device typically used for sensing purposes. Afterwards, several refractive index sensing experiments were performed by placing different concentrations of ethanol solution on the polycarbonate track-etched membranes. As a result, a sensitivity value of around 56 nm/RIU was obtained and the reusability of the substrate was demonstrated. These results pave the way for the development of optical porous sensors with such easily available mesoporous material.This research was funded by the Spanish Government through grant TEC2015-63838-C3-1-R-OPTONANOSENS and the Universitat Politecnica de Valencia through grants PAID-01-17.Martinez-Perez, P.; García-Rupérez, J. (2019). Commercial polycarbonate track-etched membranes as substrates for low-cost optical sensors. Beilstein Journal of Nanotechnology. 10:677-683. https://doi.org/10.3762/bjnano.10.6767768310Ruiz-Tórtola, Á., Prats-Quílez, F., González-Lucas, D., Bañuls, M.-J., Maquieira, Á., Wheeler, G., … García-Rupérez, J. (2018). Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes. Journal of Biophotonics, 11(10), e201800030. doi:10.1002/jbio.201800030Caroselli, R., Martín Sánchez, D., Ponce Alcántara, S., Prats Quilez, F., Torrijos Morán, L., & García-Rupérez, J. (2017). Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor. Sensors, 17(12), 2813. doi:10.3390/s17122813Prabowo, B., Purwidyantri, A., & Liu, K.-C. (2018). Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. Biosensors, 8(3), 80. doi:10.3390/bios8030080Levitsky, I. (2015). Porous Silicon Structures as Optical Gas Sensors. Sensors, 15(8), 19968-19991. doi:10.3390/s150819968Ponce-Alcántara, S., Martín-Sánchez, D., Pérez-Márquez, A., Maudes, J., Murillo, N., & García-Rupérez, J. (2018). Optical sensors based on polymeric nanofibers layers created by electrospinning. Optical Materials Express, 8(10), 3163. doi:10.1364/ome.8.003163Qiu, H.-J., Li, X., Xu, H.-T., Zhang, H.-J., & Wang, Y. (2014). Nanoporous metal as a platform for electrochemical and optical sensing. J. Mater. Chem. C, 2(46), 9788-9799. doi:10.1039/c4tc01913jShindell, O., Mica, N., Ritzer, M., & Gordon, V. D. (2015). Specific adhesion of membranes simultaneously supports dual heterogeneities in lipids and proteins. Physical Chemistry Chemical Physics, 17(24), 15598-15607. doi:10.1039/c4cp05877aPárraga-Niño, N., Quero, S., Ventós-Alfonso, A., Uria, N., Castillo-Fernandez, O., Ezenarro, J. J., … Sabrià, M. (2018). New system for the detection of Legionella pneumophila in water samples. Talanta, 189, 324-331. doi:10.1016/j.talanta.2018.07.013Martín-Sánchez, D., Ponce-Alcántara, S., Martínez-Pérez, P., & García-Rupérez, J. (2019). Macropore Formation and Pore Morphology Characterization of Heavily Doped p-Type Porous Silicon. Journal of The Electrochemical Society, 166(2), B9-B12. doi:10.1149/2.0051902jesWilson, R. H., Nadeau, K. P., Jaworski, F. B., Tromberg, B. J., & Durkin, A. J. (2015). Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization. Journal of Biomedical Optics, 20(3), 030901. doi:10.1117/1.jbo.20.3.030901Aran, K., Sasso, L. A., Kamdar, N., & Zahn, J. D. (2010). Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices. Lab on a Chip, 10(5), 548. doi:10.1039/b924816aGarcía-Rupérez, J., Toccafondo, V., Bañuls, M. J., Castelló, J. G., Griol, A., Peransi-Llopis, S., & Maquieira, Á. (2010). Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime. Optics Express, 18(23), 24276. doi:10.1364/oe.18.024276Sani, E., & Dell’Oro, A. (2016). Spectral optical constants of ethanol and isopropanol from ultraviolet to far infrared. Optical Materials, 60, 137-141. doi:10.1016/j.optmat.2016.06.041Ooi, C. H., Bormashenko, E., Nguyen, A. V., Evans, G. M., Dao, D. V., & Nguyen, N.-T. (2016). Evaporation of Ethanol–Water Binary Mixture Sessile Liquid Marbles. Langmuir, 32(24), 6097-6104. doi:10.1021/acs.langmuir.6b01272Ogończyk, D., Jankowski, P., & Garstecki, P. (2012). Functionalization of polycarbonate with proteins; open-tubular enzymatic microreactors. Lab on a Chip, 12(15), 2743. doi:10.1039/c2lc40204aKosobrodova, E., Jones, R. T., Kondyurin, A., Chrzanowski, W., Pigram, P. J., McKenzie, D. R., & Bilek, M. M. M. (2015). Orientation and conformation of anti-CD34 antibody immobilised on untreated and plasma treated polycarbonate. Acta Biomaterialia, 19, 128-137. doi:10.1016/j.actbio.2015.02.027Godeau, G., Amigoni, S., Darmanin, T., & Guittard, F. (2016). Post-functionalization of plasma treated polycarbonate substrates: An efficient way to hydrophobic, oleophobic plastics. Applied Surface Science, 387, 28-35. doi:10.1016/j.apsusc.2016.06.053Sultanova, N. G., Kasarova, S. N., & Nikolov, I. D. (2012). Characterization of optical properties of optical polymers. Optical and Quantum Electronics, 45(3), 221-232. doi:10.1007/s11082-012-9616-

    Estudio de los fenómenos de onda lenta y dispersión en estructuras periódicas de fotónica integrada

    Full text link
    El desarrollo de las tecnologías ópticas de transmisión permite disponer hoy en día de grandes anchos de banda y elevadas velocidades de transmisión, lo que permite proporcionar servicios de una calidad cada vez mayor a un mayor número de usuarios. Para dar un paso más en el campo de las comunicaciones ópticas es necesario el desarrollo de dispositivos fotónicos que puedan realizar directamente en el dominio óptico las tareas de procesado de la red, sin necesidad de una conversión al dominio eléctrico que limite la velocidad de transmisión final. Una de las posibles alternativas para conseguir este tipo de dispositivos de procesado óptico es el uso de estructuras periódicas como los cristales fotónicos. En esta tesis doctoral se ha estudiado la utilización de estructuras periódicas para la realización de funciones de procesado directamente en el dominio óptico, como el guiado, la creación de líneas de retardo y compensadores de dispersión ultracompactos, o la implementación de una puerta lógica XOR basada en elementos de onda lenta. Además de estas funcionalidades, también se han estudiado diversos aspectos de interés de este tipo de estructuras periódicas, como son la influencia de la longitud finita en guías de cristal fotónico, el uso de estructuras de onda lenta para la mejora de los efectos no lineales de los materiales, o el incremento de las pérdidas de propagación en las regiones de baja velocidad de grupo. También se ha propuesto una nueva configuración de cristal fotónico consistente en una red de columnas de Silicio en un medio de sílice, la cual proporciona una serie de ventajas respecto a las configuraciones de agujeros en un medio de alto índice utilizadas habitualmente. Se han podido fabricar y caracterizar diversas muestras de algunas de las estructuras estudiadas teóricamente, lo que ha permitido comprobar que su comportamiento real se ajusta a los resultados obtenidos en la fase de diseño. Comentar que, tanto en la fase de diseño como en la de fGarcía Rupérez, J. (2008). Estudio de los fenómenos de onda lenta y dispersión en estructuras periódicas de fotónica integrada [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2963Palanci

    Design of slow-light-enhanced bimodal interferometers using dimensionality reduction techniques

    Full text link
    [EN] Interferometers usually require long paths for the ever-increasing requirements of high-performance operation, which hinders the miniaturization and integration of photonic circuits into very compact devices. Slow-light based interferometers provide interesting advantages in terms of both compactness and sensitivity, although their optimization is computationally costly and inefficient, due to the large number of parameters to be simultaneously designed. Here we propose the design of slow-light-enhanced bimodal interferometers by using principal component analysis to reduce the high-dimensional design space. A low-dimensional hyperplane containing all optimized designs is provided and investigated for changes in the silicon core and cladding refractive index. As a result, all-dielectric single-channel interferometers as modulators of only 33 mu m(2) footprint and sensors with 19.2 x 10(3) 2 pi rad/RIU.cm sensitivity values are reported and validated by 2 different simulation methods. This work allows the design and optimization of slow light interferometers for different applications by considering several performance criteria, which can be extended to other photonic structures. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing AgreementEuropean Commission (FEDER Valencia Regional Government 2014-2020); Spanish Government (PID2019-106965RBC21-PHOLOW); Generalitat Valenciana (ACIF/2019/009, AVANTI/2019/123, PPC/2020/037)Torrijos-Morán, L.; García-Rupérez, J. (2021). Design of slow-light-enhanced bimodal interferometers using dimensionality reduction techniques. Optics Express. 29(21):33962-33975. https://doi.org/10.1364/OE.425865S3396233975292

    Computational binding study of cardiac troponin I antibody towards cardiac versus skeletal troponin I

    Full text link
    [EN] A computational study of the interaction of cardiac troponin I (cTnI) with its specific antibody and of that antibody with skeletal troponin I (sTnI), the principal interferon of cTnI, is carried out. Computational and simulation tools such as FTSite, FTMap, FTDock and pyDock are used to determine the binding sites of these molecules and to study their interactions and molecular docking performance, allowing us to obtain relevant information related with the antigen-antibody interaction for each of the targets. In the context of the development of immunosensing platforms, this type of computational analysis allows performing a preliminary in-silico affinity study of the available bioreceptors for a better selection when moving to the experimental stage, with the subsequent saving in cost and time.Cardiac troponin I (cTnI); Skeletal troponin I (sTnI); Immunosensing; Binding site; Molecular docking; FTSite; FTMap; FTDock; pyDockSabek, J.; Martinez-Perez, P.; García-Rupérez, J. (2019). Computational binding study of cardiac troponin I antibody towards cardiac versus skeletal troponin I. Computational Biology and Chemistry. 80:147-151. https://doi.org/10.1016/j.compbiolchem.2019.04.002S1471518

    Sensitivity comparison of a self-standing porous silicon membrane under flow-through and flow-over conditionshttps://aplicat.upv.es/senia-app/edicion/mantArticuloBib.faces?p_idioma=v

    Full text link
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] An optical sensor based on a self-standing porous silicon (PS) membrane is presented. The sensor was created by electrochemically etching a heavily doped p-type silicon wafer with an organic electrolyte that contained dimethylformamide. After fabrication, a high-current density close to electropolishing was applied in order to allow the detachment from the substrate using a lift-off method. The PS membrane was integrated ina microfluidic cell for sensing purposes, and reflectance spectra were continuously obtained while the target substance was flowed. A comparison of the bulk sensitivity is achieved when flowing through and over the pores is reported. During the experiments,a maximum sensitivity of 770 nm/RIU measured at 1700 nm was achieved. Experimental sensitivity values are in good agreement with the theoretical calculations performed when flowing through the PS membrane, it means that the highest possible sensitivity of that sensor was achieved. In contrast, a drop in the sensi-tivity of around 25% was observed when flowing over the PS membrane.This work was supported by the Ministry of Economy and Competitiveness. The associate editor coordinating the review of this paper and approving it for publication was Prof. Aime Lay-Ekuakille.Martín-Sánchez, D.; Ponce-Alcántara, S.; García-Rupérez, J. (2019). Sensitivity comparison of a self-standing porous silicon membrane under flow-through and flow-over conditionshttps://aplicat.upv.es/senia-app/edicion/mantArticuloBib.faces?p_idioma=v. IEEE Sensors Journal. 19(9):3279-3281. https://doi.org/10.1109/JSEN.2019.2893885S3279328119

    Real-time functionalization and biosensing in subwavelength grating bimodal waveguides

    Full text link
    [EN] In this paper, we present for the first time experimental results of biosensing processes by using subwavelength grating bimodal waveguides as a refractive index sensors. We demonstrate the detection of 10ppm concentration of Bovine Serum Albumin (BSA) with a 190pm wavelength shift after a functionalization of the sensor surface with a layer of protein A/G in a continuous flowing system. Real-time data of each step is obtained, validating these kind of novel and highly sensitive SWG sensors for biosensing purposes.The authors acknowledge the funding from the Generalitat Valencia through project AVANTI/2019/123 and grant ACIF/2019/009.Torrijos-Morán, L.; Martinez-Perez, P.; García-Rupérez, J. (2020). Real-time functionalization and biosensing in subwavelength grating bimodal waveguides. 1-3. http://hdl.handle.net/10251/179823S1

    Slow light bimodal interferometry in one-dimensional photonic crystal waveguides

    Full text link
    [EN] Strongly influenced by the advances in the semiconductor industry, the miniaturization and integration of optical circuits into smaller devices has stimulated considerable research efforts in recent decades. Among other structures, integrated interferometers play a prominent role in the development of photonic devices for on-chip applications ranging from optical communication networks to point-of-care analysis instruments. However, it has been a long-standing challenge to design extremely short interferometer schemes, as long interaction lengths are typically required for a complete modulation transition. Several approaches, including novel materials or sophisticated configurations, have been proposed to overcome some of these size limitations but at the expense of increasing fabrication complexity and cost. Here, we demonstrate for the first time slow light bimodal interferometric behaviour in an integrated single-channel one-dimensional photonic crystal. The proposed structure supports two electromagnetic modes of the same polarization that exhibit a large group velocity difference. Specifically, an over 20-fold reduction in the higher-order-mode group velocity is experimentally shown on a straightforward all-dielectric bimodal structure, leading to a remarkable optical path reduction compared to other conventional interferometers. Moreover, we experimentally demonstrate the significant performance improvement provided by the proposed bimodal photonic crystal interferometer in the creation of an ultra-compact optical modulator and a highly sensitive photonic sensor.The authors acknowledge funding from the Generalitat Valenciana through the AVANTI/2019/123, ACIF/2019/009 and PPC/2020/037 grants and from the European Union through the operational program of the European Regional Development Fund (FEDER) of the Valencia Regional Government 2014-2020. We also thank Pablo Sanchis and Irene Olivares for their helpful discussions and assistanceTorrijos-Morán, L.; Griol Barres, A.; García-Rupérez, J. (2021). Slow light bimodal interferometry in one-dimensional photonic crystal waveguides. Light: Science & Applications. 10(1):16.1-16.12. https://doi.org/10.1038/s41377-020-00460-yS16.116.1210
    corecore