57,043 research outputs found

    Holistic Influence Maximization: Combining Scalability and Efficiency with Opinion-Aware Models

    Full text link
    The steady growth of graph data from social networks has resulted in wide-spread research in finding solutions to the influence maximization problem. In this paper, we propose a holistic solution to the influence maximization (IM) problem. (1) We introduce an opinion-cum-interaction (OI) model that closely mirrors the real-world scenarios. Under the OI model, we introduce a novel problem of Maximizing the Effective Opinion (MEO) of influenced users. We prove that the MEO problem is NP-hard and cannot be approximated within a constant ratio unless P=NP. (2) We propose a heuristic algorithm OSIM to efficiently solve the MEO problem. To better explain the OSIM heuristic, we first introduce EaSyIM - the opinion-oblivious version of OSIM, a scalable algorithm capable of running within practical compute times on commodity hardware. In addition to serving as a fundamental building block for OSIM, EaSyIM is capable of addressing the scalability aspect - memory consumption and running time, of the IM problem as well. Empirically, our algorithms are capable of maintaining the deviation in the spread always within 5% of the best known methods in the literature. In addition, our experiments show that both OSIM and EaSyIM are effective, efficient, scalable and significantly enhance the ability to analyze real datasets.Comment: ACM SIGMOD Conference 2016, 18 pages, 29 figure

    The inhabited environment, infrastructure development and advanced urbanization in China's Yangtze River Delta Region

    Get PDF
    This paper analyzes the relationship among the inhabited environment, infrastructure development and environmental impacts in China's heavily urbanized Yangtze River Delta region. Using primary human environment data for the period 2006-2014, we examine factors affecting the inhabited environment and infrastructure development: urban population, GDP, built-up area, energy consumption, waste emission, transportation, real estate and urban greenery. Then we empirically investigate the impact of advanced urbanization with consideration of cities' differences. Results from this study show that the growth rate of the inhabited environment and infrastructure development is strongly influenced by regional development structure, functional orientations, traffic network and urban size and form. The effect of advanced urbanization is more significant in large and mid-size cities than huge and mega cities. Energy consumption, waste emission and real estate in large and mid-size cities developed at an unprecedented rate with the rapid increase of economy. However, urban development of huge and mega cities gradually tended to be saturated. The transition development in these cities improved the inhabited environment and ecological protection instead of the urban construction simply. To maintain a sustainable advanced urbanization process, policy implications included urban sprawl control polices, ecological development mechanisms and reforming the economic structure for huge and mega cities, and construct major cross-regional infrastructure, enhance the carrying capacity and improvement of energy efficiency and structure for large and mid-size cities

    度態建築

    Get PDF
    postprin

    Determination of a set of constitutive equations for an al-li alloy at SPF conditions

    Get PDF
    © 2015 The Authors.Uniaxial tensile tests of aluminium-lithium alloy AA1420wereconducted at superplastic forming conditions. The mechanical properties of this Al-Li alloy were then modelled by a set of physicallybased constitutive equations. The constitutive equations describe the isotropic work hardening,recovery and damage by dislocation density changes and grain size evolution. Based on a recent upgraded optimisation technique, the material constants for these constitutive equations were determined

    Local Strain Rate and Curvature Dependences of Scalar Dissipation Rate Transport in Turbulent Premixed Flames: A Direct Numerical Simulation Analysis

    Get PDF
    The statistical behaviours of the instantaneous scalar dissipation rate Nc of reaction progress variable c in turbulent premixed flames have been analysed based on three-dimensional direct numerical simulation data of freely propagating statistically planar flame and V-flame configurations with different turbulent Reynolds number Ret. The statistical behaviours of Nc and different terms of its transport equation for planar and V-flames are found to be qualitatively similar. The mean contribution of the density-variation term T1 is positive, whereas the molecular dissipation term (-D2) acts as a leading order sink. The mean contribution of the strain rate term T2 is predominantly negative for the cases considered here. The mean reaction rate contribution T3 is positive (negative) towards the unburned (burned) gas side of the flame, whereas the mean contribution of the diffusivity gradient term (D) assumes negative (positive) values towards the unburned (burned) gas side. The local statistical behaviours of Nc, T1, T2, T3, (-D2), and f(D) have been analysed in terms of their marginal probability density functions (pdfs) and their joint pdfs with local tangential strain rate aT and curvature km. Detailed physical explanations have been provided for the observed behaviour

    E1-Like Activating Enzyme Atg7 Is Preferentially Sequestered into p62 Aggregates via Its Interaction with LC3-I

    Get PDF
    p62 is constitutively degraded by autophagy via its interaction with LC3. However, the interaction of p62 with LC3 species in the context of the LC3 lipidation process is not specified. Further, the p62-mediated protein aggregation's effect on autophagy is unclear. We systemically analyzed the interactions of p62 with all known Atg proteins involved in LC3 lipidation. We find that p62 does not interact with LC3 at the stages when it is being processed by Atg4B or when it is complexed or conjugated with Atg3. p62 does interact with LC3-I and LC3-I:Atg7 complex and is preferentially recruited by LC3-II species under autophagic stimulation. Given that Atg4B, Atg3 and LC3-Atg3 are indispensable for LC3-II conversion, our study reveals a protective mechanism for Atg4B, Atg3 and LC3-Atg3 conjugate from being inappropriately sequestered into p62 aggregates. Our findings imply that p62 could potentially impair autophagy by negatively affecting LC3 lipidation and contribute to the development of protein aggregate diseases. © 2013 Gao et al

    Neutron skin uncertainties of Skyrme energy density functionals

    Full text link
    Background: Neutron-skin thickness is an excellent indicator of isovector properties of atomic nuclei. As such, it correlates strongly with observables in finite nuclei that depend on neutron-to-proton imbalance and the nuclear symmetry energy that characterizes the equation of state of neutron-rich matter. A rich worldwide experimental program involving studies with rare isotopes, parity violating electron scattering, and astronomical observations is devoted to pinning down the isovector sector of nuclear models. Purpose: We assess the theoretical systematic and statistical uncertainties of neutron-skin thickness and relate them to the equation of state of nuclear matter, and in particular to nuclear symmetry energy parameters. Methods: We use the nuclear superfluid Density Functional Theory with several Skyrme energy density functionals and density dependent pairing. To evaluate statistical errors and their budget, we employ the statistical covariance technique. Results: We find that the errors on neutron skin increase with neutron excess. Statistical errors due to uncertain coupling constants of the density functional are found to be larger than systematic errors, the latter not exceeding 0.06 fm in most neutron-rich nuclei across the nuclear landscape. The single major source of uncertainty is the poorly determined slope L of the symmetry energy that parametrizes its density dependence. Conclusions: To provide essential constraints on the symmetry energy of the nuclear energy density functional, next-generation measurements of neutron skins are required to deliver precision better than 0.06 fm.Comment: 5 pages, 4 figure

    Effect of disorder with long-range correlation on transport in graphene nanoribbon

    Full text link
    Transport in disordered armchair graphene nanoribbons (AGR) with long-range correlation between quantum wire contact is investigated by transfer matrix combined with Landauer's formula. Metal-insulator transition is induced by disorder in neutral AGR. Thereinto, the conductance is one conductance quantum for metallic phase and exponentially decays otherwise when the length of AGR is infinity and far longer than its width. Similar to the case of long-range disorder, the conductance of neutral AGR first increases and then decreases while the conductance of doped AGR monotonically decreases, as the disorder strength increases. In the presence of strong disorder, the conductivity depends monotonically and non-monotonically on the aspect ratio for heavily doped and slightly doped AGR respectively.Comment: 6 pages, 8 figures; J. Phys: Condensed Matter (May 2012
    • …
    corecore