183 research outputs found

    Inhibition of bacterial adhesion to HT-29 cells by lipoteichoic acid extracted from Clostridium butyricum

    Get PDF
    The aim of this experiment was to study the effect of the lipoteichoic acid (LTA) extracted from Clostridium butyricum on the adhesion of C. butyricum and Escherichia coli to HT-29 human intestinal cells. The method of extraction of lipoteichoic acid form C. butyricum by TX114 was evaluated. The purification of the LTA by DEAE-cellulose 52 anion exchange chromatography was also investigated. In addition, the LTA was assayed for its inhibition of the adhesion of C. butyricum and E. coli to HT-29 cells and antimicrobial activity. Our results showed that LTA could be extracted by TX114 and purified by DEAE-cellulose 52 anion exchange chromatography and could inhibit the adhesion of C. butyricum and E. coli to HT-29 cells. This result also revealed that the LTA from C. butyricum could inhibit the adhesion of C. butyricum and E. coli to intestinal cells.Key words: Lipoteichoic acid, Clostridium butyricum, HT-29 cells, adhesion, Escherichia col

    AFLP analysis on genetic diversity and population structure of small yellow croaker Larimichthys polyactis

    Get PDF
    The population genetic structure and diversity of small yellow croaker Larimichthys polyactis in the Bohai Bay, Yellow Sea and East China Sea were analyzed using amplified fragment length polymorphism(AFLP). Ninety-one individuals were collected from six locations representing three stocks of small yellow croaker. A total of 218 putative loci were detected by 3 primer combinations, 148 of which were polymorphic (67.89%). The proportion of polymorphic loci and Nei’s genetic diversity for six populations ranged from 55.34 - 60.09%, and from 0.1244 - 0.1378. AMOVA analysis and pairwise FST revealedsignificant genetic differentiation among the three groups based on the breeding migration routes and over-wintering grounds, supporting separate stocks in this species. The result shows the migratorybehavior might be an important factor which influences the genetic structure of this species. The UPGMA tree also revealed the significant geographic structure in this species. Pattern of isolation bydistance was observed in this species, indicating that significant genetic differentiation among localities of small yellow croaker might be due to the geographic distance

    Genetic and phylogenetic analysis of ten Gobiidae species in China based on amplified fragment length polymorphism (AFLP) analysis

    Get PDF
    To study the genetic and phylogenetic relationship of gobioid fishes in China, the representatives of 10 gobioid fishes from 2 subfamilies in China were examined by amplified fragment length polymorphism (AFLP) analysis. We established 220 AFLP bands for 45 individuals from the 10 species, and the percentage of polymorphic bands was 100%. The percentage of polymorphic loci within species ranged from 3.61 to 58.56%. Chaeturichthys stigmatias showed the greatest percentage of polymorphic loci (58.56%), the highest Nei’s genetic diversity (0.2421 ± 0.2190) and Shannon’s information index (0.3506 ± 0.3092), while Pterogobius zacalles showed the lowest percentage polymorphic loci (3.61%), the lowest Nei’s genetic diversity (0.0150 ± 0.0778) and lowest Shannon’s information index (0.0219 ± 0.1136). The topology of UPGMA tree showed that the individuals from the same species clustered together and the 10 species formed two major clades. One clade consisted Cryptocentrus filifer, P. zacalles, Tridentiger trigonocephalus, Chaeturichthys hexanema, C. stigmatias, Acanthogobius flavimanus and Synechogobius ommaturus, and the other clade consisted Odontamblyopus rubicundus, Trypauchen vagina and Ctenotrypauchen microcephalus. The results agreed with the traditional taxonomy of the morphological characters. AFLP fingerprints were successfully used to study the phylogenetic relationship of the gobioid fishes and it identified species origins of morphologically similar taxa.Key words: Phylogenetic, amplified fragment length polymorphism (AFLP), gobiidae, Amblyopinae, gobiinae

    Genetics and phylogeny of genus Coilia in China based on AFLP markers

    Get PDF
    The taxonomy of Coilia has been extensively studied in China, and yet phylogenetic relationships among component taxa remain controversial. We used a PCR-based fingerprinting technique, amplified fragment length polymorphism (AFLP) to characterize and identify all four species of Coilia in China. We examined the genetic relationships of the four species of Coilia and a subspecies of Coilia nasus with AFLP. A total of 180 AFLP loci were generated from six primer combinations, of which 76.11% were polymorphic. The mean genetic distance between pairs of taxa ranged from 0.047 to 0.596. The neighbor-joining tree and UPGMA dendrogram resolved the investigated species into three separate lineages: (1) C. mystus, (2) C. grayii and (3) C. brachygnathus, C. nasus, and C. nasus taihuensis. Phylogenetic analysis of the AFLP data is inconsistent with current morphological taxonomic systems. The AFLP data indicated a close relationship among C. brachygnathus, C. nasus taihuensis, and C. nasus. Therefore, the two species described under Coilia (C. brachygnathus and C. nasus taihuensis) are treated as synonyms of C. nasus

    Phylogeography Study of Ammodytes personatus in Northwestern Pacific: Pleistocene Isolation, Temperature and Current Conducted Secondary Contact

    Get PDF
    To assess the role of historical process and contemporary factors in shaping population structures in Northwestern Pacific, mitochondrial control region sequences were analyzed to characterize the phylogeography and population structure of the Japanese sand lance Ammodytes personatus. A total of 429 individuals sampled from 17 populations through the species' range are sequenced. Two distinct lineages are detected, which might have been divergent in the Sea of Japan and Pacific costal waters of Japanese Island, during the low sea level. Significant genetic structure is revealed between the Kuroshio and Oyashio Currents. However, significant genetic structure is also detected in the Sea of Japan, contracting expected homogenization hypothesis in Tsushima Current. The haplotype frequency of lineages in both sides of Japanese Island and significant genetic structure between north and south groups revealed that the distribution of lineage B and north group were highly limited by the annual sea temperature. The lack of lineage B in Qingdao population with low sea temperature reflects the sea temperature barrier. Lack of genetic structure in the south group and north group populations indicated that ocean currents within groups facilitated the dispersal of A. personatus

    RIP4 inhibits STAT3 signaling to sustain lung adenocarcinoma differentiation.

    Get PDF
    Loss of epithelial differentiation and extracellular matrix (ECM) remodeling are known to facilitate cancer progression and are associated with poor prognosis in patients with lung cancer. We have identified Receptor-interacting serine/threonine protein kinase 4 (RIP4) as a regulator of tumor differentiation in lung adenocarcinoma (AC). Bioinformatics analyses of human lung AC samples showed that poorly differentiated tumors express low levels of RIP4, whereas high levels are associated with better overall survival. In vitro, lung tumor cells expressing reduced RIP4 levels showed enhanced activation of STAT3 signaling and had a greater ability to invade through collagen. In contrast, overexpression of RIP4 inhibited STAT3 activation, which abrogated interleukin-6-dependent induction of lysyl oxidase, a collagen cross-linking enzyme. In an autochthonous mouse model of lung AC initiated by Kras(G12D) expression with loss of p53, Rip4 knockdown tumors progressed to a poorly differentiated state marked by an increase in Hmga2, reduced Ttf1, and enrichment of genes regulating extracellular remodeling and Jak-Stat signaling. Tail vein injections of cells overexpressing Rip4 showed a reduced potential to invade and form tumors, which was restored by co-expression of Stat3. Altogether, our work has identified that loss of RIP4 enhances STAT3 signaling in lung cancer cells, promoting the expression of ECM remodeling genes and cancer dedifferentiation
    corecore