9,245 research outputs found
Picosecond ionization dynamics in femtosecond filaments at high pressures
We investigate the plasma dynamics inside a femtosecond-pulse-induced filament generated in an argon gas for a wide range of pressures up to 60 bar. At higher pressures, we observe ionization immediately following a pulse, with up to a threefold increase in the electron density within 30 ps after the filamentary propagation of a femtosecond pulse. Our study suggests that this picosecond evolution can be attributed to collisional ionization including Penning and associative ionizations and electron-impact ionization of excited atoms generated during the pulse. The dominance of excited atoms over ionized atoms at the end of the pulse also indicates an intrapulse inhibition of avalanche ionization. This delayed ionization dynamics provides evidence for diagnosing atomic and molecular excitation and ionization in intense laser interaction with high-pressure gases
Beta-blockers to prevent gastroesophageal varices in patients with cirrhosis.
BACKGROUND: Nonselective beta-adrenergic blockers decrease portal pressure and prevent variceal hemorrhage. Their effectiveness in preventing varices is unknown. METHODS: We randomly assigned 213 patients with cirrhosis and portal hypertension (minimal hepatic venous pressure gradient [HVPG] of 6 mm Hg) to receive timolol, a nonselective beta-blocker (108 patients), or placebo (105 patients). The primary end point was the development of gastroesophageal varices or variceal hemorrhage. Endoscopy and HVPG measurements were repeated yearly. RESULTS: During a median follow-up of 54.9 months, the rate of the primary end point did not differ significantly between the timolol group and the placebo group (39 percent and 40 percent, respectively; P=0.89), nor were there significant differences in the rates of ascites, encephalopathy, liver transplantation, or death. Serious adverse events were more common among patients in the timolol group than among those in the placebo group (18 percent vs. 6 percent, P=0.006). Varices developed less frequently among patients with a baseline HVPG of less than 10 mm Hg and among those in whom the HVPG decreased by more than 10 percent at one year and more frequently among those in whom the HVPG increased by more than 10 percent at one year. CONCLUSIONS: Nonselective beta-blockers are ineffective in preventing varices in unselected patients with cirrhosis and portal hypertension and are associated with an increased number of adverse events. (ClinicalTrials.gov number, NCT00006398.
Influence of silencing the MC4R gene by lentivirusmediated RNA interference in bovine fibroblast cells
Melanocortin receptor 4 (MC4R) is a key element in the mechanisms used to regulate both aspects of keeping the balance between energy uptake and energy expenditure. MC4R was knocked down by lentivirus-mediated shRNA expressing plasmids, which were controlled by the U6 promoter in bovine fibroblast cells, and the expression of MC4R was examined by the real time-PCR and Western blot analysis. Real time-PCR analysis was used to characterize the expression of Leptin, POMC, AGRP, MC3R and NPY gene. The relative genes [leptin, proopiomelanocortin (POMC), agouti-related peptide (AGRP), MC3R and neuropeptide Y (NPY)] expression level seemed to be closely associated with the MC4R gene in bovine fibroblast cell lines (BFCs). The levels of both MC4R mRNA and protein were significantly reduced by RNA interference (RNAi) mediated knockdown of MC4R in BFCs cells transfected with plasmid-based MC4R-specific shRNAs. The finding of this study demonstrated that vector based siRNA expression systems were an efficient approach to the knockdown of the MC4R gene expression in bovine fibroblast cells and they provided a new molecular basis for understanding the relationship of MC4R and other genes, which were responsible for the regulation of energy homeostasis by the melanocortin system.Key words: Melanocortin receptor 4 (MC4R), RNAi, bovine fibroblast cells, energy homeostasis
Recommended from our members
Multiple superionic states in helium–water compounds
Superionic states are phases of matter that can simultaneously exhibit some of the properties of a liquid and of a solid. For example, in superionic ice, hydrogen atoms can move freely while oxygen atoms are fixed in their sublattice. “Superionicity” has attracted much attention both in fundamental science and applications. Helium is the most inert element in nature and it is generally considered to be unreactive. Here we use ab initio calculations to show that He and H2O can form stable compounds within a large pressure range which can exist even close to ambient pressure. Surprisingly, we find that they can form two previously unknown types of superionic states. In the first of these phases the helium atoms exhibit liquid behavior within a fixed ice-lattice framework. In the second of these phases, both helium and hydrogen atoms move in a liquid-like fashion within a fixed oxygen sublattice. Because the He-O interaction is weaker than the H-O interaction, the helium atoms in these superionic states have larger diffusion coefficients and lower “melting” temperatures than that of hydrogen, although helium is heavier than hydrogen. The insertion of helium atoms substantially decreases the pressure at which superionic states may be formed, compared to those in pure ice.Includes EPSR
Recommended from our members
Experimental studies of edge shear flow and poloidal residual stress in proximity to the density limit of HL-2A tokamak
Recent experimental results about the edge shear flow and poloidal residual stress near the density limit of HL-2A tokamak are reported in this paper. The studies found that the plasma response passes from adiabatic to hydrodynamic response as the plasma density approaches Greenwald density, therefore the residual stress, which is the non-diffusive item in the turbulent Reynolds stress, is reduced. The plasma intrinsic poloidal torque characterized by the divergence of residual stress decreases drastically. The reduction of turbulent generation of edge poloidal flow leads to the decreased edge EĂ—B poloidal flow shearing rate. These experimental results demonstrate the important role of reduced residual stress in the edge poloidal shear layer collapse in the proximity of tokamak density limit
Enumeration of distinct mechanically stable disk packings in small systems
We create mechanically stable (MS) packings of bidisperse disks using an
algorithm in which we successively grow or shrink soft repulsive disks followed
by energy minimization until the overlaps are vanishingly small. We focus on
small systems because this enables us to enumerate nearly all distinct MS
packings. We measure the probability to obtain a MS packing at packing fraction
and find several notable results. First, the probability is highly
nonuniform. When averaged over narrow packing fraction intervals, the most
probable MS packing occurs at the highest and the probability decays
exponentially with decreasing . Even more striking, within each
packing-fraction interval, the probability can vary by many orders of
magnitude. By using two different packing-generation protocols, we show that
these results are robust and the packing frequencies do not change
qualitatively with different protocols.Comment: 4 pages, 3 figures, Conference Proceedings for X International
Workshop on Disordered System
- …