117 research outputs found

    Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'.

    Get PDF
    Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required

    Lactate signalling regulates fungal β-glucan masking and immune evasion

    Get PDF
    AJPB: This work was supported by the European Research Council (STRIFE, ERC- 2009-AdG-249793), The UK Medical Research Council (MR/M026663/1), the UK Biotechnology and Biological Research Council (BB/K017365/1), the Wellcome Trust (080088; 097377). ERB: This work was supported by the UK Biotechnology and Biological Research Council (BB/M014525/1). GMA: Supported by the CNPq-Brazil (Science without Borders fellowship 202976/2014-9). GDB: Wellcome Trust (102705). CAM: This work was supported by the UK Medical Research Council (G0400284). DMM: This work was supported by UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC/K000306/1). NARG/JW: Wellcome Trust (086827, 075470,101873) and Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (097377). ALL: This work was supported by the MRC Centre for Medical Mycology and the University of Aberdeen (MR/N006364/1).Peer reviewedPostprin

    PPARγ Controls Dectin-1 Expression Required for Host Antifungal Defense against Candida albicans

    Get PDF
    We recently showed that IL-13 or peroxisome proliferator activated receptor γ (PPARγ) ligands attenuate Candida albicans colonization of the gastrointestinal tract. Here, using a macrophage-specific Dectin-1 deficient mice model, we demonstrate that Dectin-1 is essential to control fungal gastrointestinal infection by PPARγ ligands. We also show that the phagocytosis of yeast and the release of reactive oxygen intermediates in response to Candida albicans challenge are impaired in macrophages from Dectin-1 deficient mice treated with PPARγ ligands or IL-13. Although the Mannose Receptor is not sufficient to trigger antifungal functions during the alternative activation of macrophages, our data establish the involvement of the Mannose Receptor in the initial recognition of non-opsonized Candida albicans by macrophages. We also demonstrate for the first time that the modulation of Dectin-1 expression by IL-13 involves the PPARγ signaling pathway. These findings are consistent with a crucial role for PPARγ in the alternative activation of macrophages by Th2 cytokines. Altogether these data suggest that PPARγ ligands may be of therapeutic value in esophageal and gastrointestinal candidiasis in patients severely immunocompromised or with metabolic diseases in whom the prevalence of candidiasis is considerable

    Scavenger receptors and β-glucan receptors participate in the recognition of yeasts by murine macrophages

    Get PDF
    Objectives: Numerous receptors have been implicated in recognition of pathogenic fungi by macrophages, including the β\beta-glucan receptor dectin-1. The role of scavenger receptors (SRs) in anti-fungal immunity is not well characterized. Methods: We studied uptake of unopsonized Saccharomycetes cerevisiae (zymosan) and live Candida albicans yeasts as well as zymosan-stimulated H2O2H_2O_2 production in J774 macrophage-like cells and peritoneal exudate macrophages (PEMs). The role of different receptors was assessed with the use of competitive ligands, transfected cells and receptor-deficient macrophages. Results: The uptake of zymosan by untreated J774 cells was mediated approximately half by SRs and half by a β\beta-glucan receptor which was distinct from dectin-1 and not linked to stimulation of H2O2H_2O_2 production. Ligands of β\beta-glucan receptors and of SRs also inhibited uptake of C. albicans by macrophages (J774 cells and PEMs). In macrophages pretreated with a CpG motif-containing oligodeoxynucleotide (CpG-ODN) the relative contribution of SRs to yeast uptake increased and that of β\beta-glucan receptors decreased. Whereas the class A SR MARCO participated in the uptake of both zymosan and C. albicans by CpG-ODN-pretreated, but not untreated macrophages, the related receptor SR-A/CD204 was involved in the uptake of zymosan, but not of C. albicans. The reduction of zymosan-stimulated H2O2H_2O_2 production observed in DS-pretreated J774 cells and in class A SRs-deficient PEMs suggest that class A SRs mediate part of this process. Conclusions: Our results revealed that SRs belong to a redundant system of receptors for yeasts. Binding of yeasts to different receptors in resting versus CpG-ODN-pre-exposed macrophages may differentially affect polarization of adaptive immune responses

    Candida soluble cell wall β-glucan facilitates ovalbumin-induced allergic airway inflammation in mice: Possible role of antigen-presenting cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although fungi have been implicated as initiating/deteriorating factors for allergic asthma, their contributing components have not been fully elucidated. We previously isolated soluble β-glucan from <it>Candida albicans </it>(CSBG) (Ohno et al., 2007). In the present study, the effects of CSBG exposure on airway immunopathology in the presence or absence of other immunogenic allergen was investigated <it>in vivo</it>, and their cellular mechanisms were analyzed both <it>in vivo </it>and <it>in vitro</it>.</p> <p>Methods</p> <p><it>In vivo</it>, ICR mice were divided into 4 experimental groups: vehicle, CSBG (25 μg/animal), ovalbumin (OVA: 2 μg/animal), and CSBG + OVA were repeatedly administered intratracheally. The bronchoalveolar lavage cellular profile, lung histology, levels of cytokines and chemokines in the lung homogenates, the expression pattern of antigen-presenting cell (APC)-related molecules in the lung digests, and serum immunoglobulin values were studied. <it>In vitro</it>, the impacts of CSBG (0–12.5 μg/ml) on the phenotype and function of immune cells such as splenocytes and bone marrow-derived dendritic cells (BMDCs) were evaluated in terms of cell proliferation, the surface expression of APC-related molecules, and OVA-mediated T-cell proliferating activity.</p> <p>Results</p> <p><it>In vivo</it>, repeated pulmonary exposure to CSBG induced neutrophilic airway inflammation in the absence of OVA, and markedly exacerbated OVA-related eosinophilic airway inflammation with mucus metaplasia in mice, which was concomitant with the amplified lung expression of Th2 cytokines and IL-17A and chemokines related to allergic response. Exposure to CSBG plus OVA increased the number of cells bearing MHC class II with or without CD80 in the lung compared to that of others. <it>In vitro</it>, CSBG significantly augmented splenocyte proliferation in the presence or absence of OVA. Further, CSBG increased the expression of APC-related molecules such as CD80, CD86, and DEC205 on BMDCs and amplified OVA-mediated T-cell proliferation through BMDCs.</p> <p>Conclusion</p> <p>CSBG potentiates allergic airway inflammation with maladaptive Th immunity, and this potentiation was associated with the enhanced activation of APCs including DC.</p

    Додатковий том «Словника української мови»

    Get PDF
    У статті подано історію роботи над Додатковим томом «Словника української мови» в 11-ти томах, описано джерела наповнення реєстру, структуру словникових статей, наведено приклади розробки статей різного типу – як нововведених слів, так і таких, що були в «Словнику української мови» і зазнали доповнення. Завдання лексикографів, які працювали над Додатковим томом, – відобразити динаміку лексичного шару української мови 1980-их рр. ХХ ст. – початку ХХІ ст. з акцентуванням її інноваційних й актуалізованих аспектів

    Innate signaling by the C-type lectin DC-SIGN dictates immune responses

    Get PDF
    Effective immune responses depend on the recognition of pathogens by dendritic cells (DCs) through pattern recognition receptors (PRRs). These receptors induce specific signaling pathways that lead to the induction of immune responses against the pathogens. It is becoming evident that C-type lectins are also important PRRs. In particular, the C-type lectin DC-SIGN has emerged as a key player in the induction of immune responses against numerous pathogens by modulating TLR-induced activation. Recent reports have begun to elucidate the molecular mechanisms underlying these immune responses. Upon pathogen binding, DC-SIGN induces an intracellular signaling pathway with a central role for the serine/threonine kinase Raf-1. For several pathogens that interact with DC-SIGN, including Mycobacterium tuberculosis and HIV-1, Raf-1 activation leads to acetylation of NF-kappa B subunit p65, which induces specific gene transcription profiles. In addition, other DC-SIGN-ligands induce different signaling pathways downstream of Raf-1, indicating that DC-SIGN-signaling is tailored to the pathogen. In this review we will discuss in detail the current knowledge about DC-SIGN signaling and its implications on immunit

    Rapid Host Defense against Aspergillus fumigatus Involves Alveolar Macrophages with a Predominance of Alternatively Activated Phenotype

    Get PDF
    The ubiquitous fungus Aspergillus fumigatus is associated with chronic diseases such as invasive pulmonary aspergillosis in immunosuppressed patients and allergic bronchopulmonary aspergillosis (ABPA) in patients with cystic fibrosis or severe asthma. Because of constant exposure to this fungus, it is critical for the host to exercise an immediate and decisive immune response to clear fungal spores to ward off disease. In this study, we observed that rapidly after infection by A. fumigatus, alveolar macrophages predominantly express Arginase 1 (Arg1), a key marker of alternatively activated macrophages (AAMs). The macrophages were also found to express Ym1 and CD206 that are also expressed by AAMs but not NOS2, which is expressed by classically activated macrophages. The expression of Arg1 was reduced in the absence of the known signaling axis, IL-4Rα/STAT6, for AAM development. While both Dectin-1 and TLR expressed on the cell surface have been shown to sense A. fumigatus, fungus-induced Arg1 expression in CD11c+ alveolar macrophages was not dependent on either Dectin-1 or the adaptor MyD88 that mediates intracellular signaling by most TLRs. Alveolar macrophages from WT mice efficiently phagocytosed fungal conidia, but those from mice deficient in Dectin-1 showed impaired fungal uptake. Depletion of macrophages with clodronate-filled liposomes increased fungal burden in infected mice. Collectively, our studies suggest that alveolar macrophages, which predominantly acquire an AAM phenotype following A. fumigatus infection, have a protective role in defense against this fungus

    Dectin-1: a role in antifungal defense and consequences of genetic polymorphisms in humans

    Get PDF
    The clinical relevance of fungal infections has increased dramatically in recent decades as a consequence of the rise of immunocompromised populations, and efforts to understand the underlying mechanisms of protective immunity have attracted renewed interest. Here we review Dectin-1, a pattern recognition receptor involved in antifungal immunity, and discuss recent discoveries of polymorphisms in the gene encoding this receptor which result in human disease
    corecore