32 research outputs found

    High resolution array-CGH analysis of single cells

    Get PDF
    Heterogeneity in the genome copy number of tissues is of particular importance in solid tumor biology. Furthermore, many clinical applications such as pre-implantation and non-invasive prenatal diagnosis would benefit from the ability to characterize individual single cells. As the amount of DNA from single cells is so small, several PCR protocols have been developed in an attempt to achieve unbiased amplification. Many of these approaches are suitable for subsequent cytogenetic analyses using conventional methodologies such as comparative genomic hybridization (CGH) to metaphase spreads. However, attempts to harness array-CGH for single-cell analysis to provide improved resolution have been disappointing. Here we describe a strategy that combines single-cell amplification using GenomePlex library technology (GenomePlex(®) Single Cell Whole Genome Amplification Kit, Sigma-Aldrich, UK) and detailed analysis of genomic copy number changes by high-resolution array-CGH. We show that single copy changes as small as 8.3 Mb in single cells are detected reliably with single cells derived from various tumor cell lines as well as patients presenting with trisomy 21 and Prader–Willi syndrome. Our results demonstrate the potential of this technology for studies of tumor biology and for clinical diagnostics

    A multiscale systems perspective on cancer, immunotherapy, and Interleukin-12

    Get PDF
    Monoclonal antibodies represent some of the most promising molecular targeted immunotherapies. However, understanding mechanisms by which tumors evade elimination by the immune system of the host presents a significant challenge for developing effective cancer immunotherapies. The interaction of cancer cells with the host is a complex process that is distributed across a variety of time and length scales. The time scales range from the dynamics of protein refolding (i.e., microseconds) to the dynamics of disease progression (i.e., years). The length scales span the farthest reaches of the human body (i.e., meters) down to the range of molecular interactions (i.e., nanometers). Limited ranges of time and length scales are used experimentally to observe and quantify changes in physiology due to cancer. Translating knowledge obtained from the limited scales observed experimentally to predict patient response is an essential prerequisite for the rational design of cancer immunotherapies that improve clinical outcomes. In studying multiscale systems, engineers use systems analysis and design to identify important components in a complex system and to test conceptual understanding of the integrated system behavior using simulation. The objective of this review is to summarize interactions between the tumor and cell-mediated immunity from a multiscale perspective. Interleukin-12 and its role in coordinating antibody-dependent cell-mediated cytotoxicity is used illustrate the different time and length scale that underpin cancer immunoediting. An underlying theme in this review is the potential role that simulation can play in translating knowledge across scales

    Multicolor Deconvolution Microscopy of Thick Biological Specimens

    No full text
    One limitation in understanding disease at the cellular level has been the inability to efficiently analyze DNA on a cell-to-cell basis within the natural tissue context. However, DNA analyses at a single-cell resolution should be instrumental for the understanding of cancer cell biology, cancer evolution, for chromosomal mosaic analysis and rare cell events, and should provide otherwise inaccessible information on essential biological processes. Here we present a fluorescence in situ hybridization-based multicolor deconvolution technique for three-dimensional microscopy. We use up to seven different color channels for probe detection, which allows the simultaneous high-resolution localization of multiple point-like sources within a biological specimen with a thickness of up to 30 μm. In addition, a DNA counterstain is used for volume labeling of the nuclei offering the opportunity for a simultaneous segmentation of nuclei. Furthermore, as the instrumentation consists of a standard fluorescence microscope it represents a low-cost method as compared to confocal microscopy

    Genomic profiling of viable and proliferative micrometastatic cells from early-stage breast cancer patients.

    No full text
    Purpose: Metastases in distant organs are the major cause of death for cancer patients, and bone marrow is a prominent homing organ for early disseminated cancer cells. However, it remains still unclear which of these cells evolve into overt metastases. We therefore established a new approach based on the analysis of viable and proliferating cancer cells by single-cell comparative genomic hybridization. Experimental Design: The bone marrow of early-stage breast tumor patients (pN0M0) was screened for tumor cells by immunostaining. By applying special short-term culturing, we selected for viable and proliferative tumor cells. The short-term culturing allowed us to evaluate the proliferative potential of micrometastatic cells, which we had previously shown to represent an independent prognostic marker. We assessed genomic changes in single disseminated cancer cells by single-cell comparative genomic hybridization. Results: We found that these viable disseminated cancer cells already had a plethora of copy number changes in their genome. All of these cells showed chromosomal copy number changes with a substantial intercellular heterogeneity and differences to the matching primary tumors. Conclusions: The established experimental strategy might pave the way for the identification of metastatic stem cells in cancer patients. Our preliminary results support the new concept that early disseminated cancer cells evolve independently from their primary tumor
    corecore