2,647 research outputs found

    Thermodynamics of Spin-1/2 AF-AF-F and F-F-AF Trimerized Quantum Heisenberg Chains

    Full text link
    The magnetization process, the susceptibility and the specific heat of the spin-1/2 AF-AF-F and F-F-AF trimerized quantum Heisenberg chains have been investigated by means of the transfer matrix renormalization group (TMRG) technique as well as the modified spin-wave (MSW) theory. A magnetization plateau at m=1/6m=1/6 for both trimerized chains is observed at low temperature. The susceptibility and the specific heat show various behaviors for different ferromagnetic and antiferromagnetic interactions and in different magnetic fields. The TMRG results of susceptibility and the specific heat can be nicely fitted by a linear superposition of double two-level systems, where two fitting equations are proposed. Three branch excitations, one gapless excitation and two gapful excitations, for both systems are found within the MSW theory. It is observed that the MSW theory captures the main characteristics of the thermodynamic behaviors at low temperatures. The TMRG results are also compared with the possible experimental data.Comment: 11 pages, 10 figure

    Electrophilic dark matter with dark photon: from DAMPE to direct detection

    Full text link
    The electron-positron excess reported by the DAMPE collaboration recently may be explained by an electrophilic dark matter (DM). A standard model singlet fermion may play the role of such a DM when it is stablized by some symmetries, such as a dark U(1)XU(1)_X^{} gauge symmetry, and dominantly annihilates into the electron-positron pairs through the exchange of a scalar mediator. The model, with appropriate Yukawa couplings, can well interpret the DAMPE excess. Naively one expects that in this type of models the DM-nucleon cross section should be small since there is no tree-level DM-quark interactions. We however find that at one-loop level, a testable DM-nucleon cross section can be induced for providing ways to test the electrophilic model. We also find that a U(1)U(1) kinetic mixing can generate a sizable DM-nucleon cross section although the U(1)XU(1)_X^{} dark photon only has a negligible contribution to the DM annihilation. Depending on the signs of the mixing parameter, the dark photon can enhance/reduce the one-loop induced DM-nucleon cross section.Comment: 4 pages, typos are corrected, references are added as well as more discussions on direct detectio

    Leptogenesis parametrized by lepton mass matrices

    Get PDF
    The conventional seesaw-leptogenesis can simultaneously explain the suppression of neutrino masses and the generation of cosmic baryon asymmetry, but usually cannot predict an unambiguous relation between these two sectors. In this work we shall demonstrate a novel left-right symmetric scenario, motivated to solve the strong CP problem by parity symmetry, where the present baryon asymmetry is determined by three charged lepton masses and a seesaw-suppressed hermitian Dirac neutrino mass matrix up to an overall scale factor. To produce the observed baryon asymmetry, this scenario requires that the neutrinos must have a normal hierarchical mass spectrum and their mixing matrix must contain a sizable Dirac CP phase. Our model can be tested in neutrino oscillation and neutrinoless double beta decay experiments.Comment: 5 pages, 2 figures. Typos are correcte

    Loop optimization for tensor network renormalization

    Get PDF
    We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor network that can be successfully applied to both classical and quantum systems on and off criticality. The key innovation in our scheme is to deform a 2D tensor network into small loops and then optimize the tensors on each loop. In this way, we remove short-range entanglement at each iteration step and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model.Comment: 15 pages, 11 figures, accepted version for Phys. Rev. Let

    Graphene Helicoid: The Distinct Properties Promote Application of Graphene Related Materials in Thermal Management

    Full text link
    The extremely high thermal conductivity of graphene has received great attention both in experiments and calculations. Obviously, new feature in thermal properties is of primary importance for application of graphene-based materials in thermal management in nanoscale. Here, we studied the thermal conductivity of graphene helicoid, a newly reported graphene-related nanostructure, using molecular dynamics simulation. Interestingly, in contrast to the converged cross-plane thermal conductivity in multi-layer graphene, axial thermal conductivity of graphene helicoid keeps increasing with thickness with a power law scaling relationship, which is a consequence of the divergent in-plane thermal conductivity of two-dimensional graphene. Moreover, the large overlap between adjacent layers in graphene helicoid also promotes higher thermal conductivity than multi-layer graphene. Furthermore, in the small strain regime (< 10%), compressive strain can effectively increase the thermal conductivity of graphene helicoid, while in the ultra large strain regime (~100% to 500%), tensile strain does not decrease the heat current, unlike that in generic solid-state materials. Our results reveal that the divergence in thermal conductivity, associated with the anomalous strain dependence and the unique structural flexibility, make graphene helicoid a new platform for studying fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene-related materials.Comment: 7 figure
    • …
    corecore