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We introduce a tensor renormalization group scheme for coarse graining a two-dimensional tensor
network that can be successfully applied to both classical and quantum systems on and off criticality. The
key innovation in our scheme is to deform a 2D tensor network into small loops and then optimize the
tensors on each loop. In this way, we remove short-range entanglement at each iteration step and
significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm
in the classical Ising model and a frustrated 2D quantum model.
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Introduction.—In recent years, the tensor network (TN)
approach [1,2] has become a powerful theoretical [3–24]
and computational [8,25–60] tool for studying condensed
matter systems. Many physical quantities, including the
partition function of a classical system, the Euclidean path
integral of a quantum system, and the expectation value of
physical observables, can be expressed in terms of tensor
networks. Evaluating these quantities is reduced to the
contraction of a multidimensional tensor network. In
the two dimensional case, many algorithms [8,32,37–
41,43,45–50,53–57] have been developed to implement
the approximate tensor contractions. Among these, the
tensor renormalization group approach introduced by
Levin and Nave [38] and its generalizations [8,22,39,43–
47,55,56,61] have unique features: the tensor contraction is
based on a fully isotropic coarse-graining procedure.
Moreover, when applying the method to a system on a
finite torus, the computational cost is lower than those based
on matrix product states (MPS) [32,37,41,48–50,53,54].
However, the Levin-Nave tensor network renormaliza-

tion (TRG, also referred as LN-TNR here) [38] is based on
the singular value decomposition (SVD) of local tensors,
which only minimizes the truncation errors of tree tensor
networks. Several improvements [45–47] have taken into
account the effect of the environments, but they are still
essentially based on tree tensor networks. These
approaches cannot completely remove short-range entan-
glements during the coarse graining process. For example,
in the 2D TN calculation of a partition function (or a path
integral) TNR based on simple SVD cannot simplify the
corner-double-line (CDL) tensor [38], despite the CDL
tensor describing a product state that should be simplified
to a one-dimensional tensor. In Ref. [8], this issue was
seriously discussed. The authors pointed out that to further
remove short-range entanglement, it is crucial to optimize
the tensor configurations that contain a loop. However, due
to the computational cost, only a crude iterative method is

used to implement the loop optimization strategy. We refer
to that method as Gu-Wen tensor network renormalization
(TEFR, also referred as GW-TNR here). Reference [8]
showed that GW-TNR can simplify CDL tensors, resulting
in a simple fixed-point tensor for gapped or short-range
correlated phases. This led to the discovery of symmetry-
protected topological (SPT) order. Recently, Refs. [55,56]
introduced a method based on the multiscale entanglement
renormalization ansatz (MERA) [33] to completely remove
short-range entanglement, even in critical systems. This
approach is referred to as Evenbly-Vidal TNR (EV-TNR).
In this Letter, we develop a new practical and accurate

algorithm called Loop-TNR, which can optimize looplike
tensor configurations more effectively than GW-TNR.
Loop-TNR can completely remove the short-range entan-
glement within a loop at each coarse-graining step, for both
on- and off-critical systems. The performance of Loop-
TNR is greater than EV-TNR, and it has a lower computa-
tional cost. To demonstrate this, we computed the central
charge and scaling dimensions of the critical Ising model,
and then examined the accuracy and stability of these data
when undergoing coarse-grained transformations. All TNR
methods can produce accurate central charge and scaling
dimensions. However, their stabilities are significantly
different. Loop-TNR and EV-TNR provide good stability
(their data remain accurate after tens of iterations), while
LN-TNR has the worst stability (its data remain accurate
only for a few iterations).
Our results suggest that all TNR approaches can produce

a fixed-point tensor which appears as the low-index part of
the tensor (with a proper choice of basis). The high-index
part is not represented by the fixed-point tensor, and can be
considered to be the “junk” part of the tensor. As we
perform more TNR iterations, the junk part may grow and
eventually destroy the fixed-point tensor at low indices.
The accuracy of an algorithm represents the accuracy of the
fixed-point tensor at low indices. Its stability represents the
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growth rate of the junk part of the tensor. We have found
that Loop-TNR can significantly reduce the growth rate of
the junk part. Moreover, Loop-TNR can be used to
compute physical measurements of 2D projected
entangled-pair states (PEPS) with high accuracy.
Loop-TNR algorithm.—The Loop-TNR algorithm has

the same purpose as GW-TNR [8]—to eliminate local
entanglement on a loop and determine the correct structures
of fixed-point tensors. However, Loop-TNR significantly
improves the numerical stability and accuracy of the
renormalization group (RG) flow, especially for critical
systems. The following illustrates the three main steps of
the Loop-TNR algorithm. The first and last steps are exact,
and the second is approximate. The method is discussed
with regard to a square lattice, but generalizations to other
lattices are straightforward.
The Loop-TNR methods begin with an entanglement

filtering step [Figs. 1(a) and 1(g)] with two important
features. First, it provides a canonical gauge for every
tensor, and filters out the local entanglement of off-critical

systems. More specifically, two projectors are inserted on
each bond shown in Fig. 1(g). These projectors are
constructed in an iterative way based on QR decomposi-
tions [62]. Subsequently, the tensors are redefined by
combining the original tensors with the nearest projectors
[see Fig. 1(g)] to complete the filtering step. In the
Supplemental Material [62], we show that this approach
can completely remove the CDL tensors. Thus, for off-
critical systems containing CDL tensors (with gauge trans-
formations), our method can simplify the tensors and
reduce the bond dimensions. Although there is no bond
reduction in critical systems, the canonical gauge provided
by this method can enhance the performance of the
following step. This step is quite efficient because the
overall computational cost scales as Oðχ5Þ, where χ is the
bond dimension of the tensor.
In the next step the tensor network must be deformed

from a square lattice to a square-octagon lattice [see
Fig. 1(c)], as in the LN-TNR algorithm. However, approx-
imations are necessary to avoid increasing the bond
dimensions of the octagons. In the LN-TNR algorithm,
this is achieved by minimizing the following single-site
cost functions:

The optimal S values are found using SVD and keeping
only the largest singular χ values. Here, “·” means tracing
over the indices of connected bonds.
The Loop-TNR algorithm uses an alternative method to

reduce the bond dimensions. First, we define a cost
function on the small patch shown in Fig. 1(h), i.e.,

f ¼ ∥T1 · T2 · T3 · T4 − S1 · S2 · S3 · S4 · S5 · S6 · S7 · S8∥2;

ð1Þ

where the shaded square is deformed to an octagon. Since
the cost function is now defined on a loop, we can remove
the short-range entanglement inside this loop and signifi-
cantly improve the accuracy, especially for critical systems.
Furthermore, there is an efficient way to find the optimal S
tensors by viewing each patch as a wave function made up
of matrix product states (MPS) with periodic boundary
conditions. The eight dotted lines shown in Fig. 1(h) are the
physical legs of the MPS, and the solid lines are the virtual
legs of the MPS. Minimizing the cost function is equivalent
to minimizing the distance between two MPS. Thus, S
tensors can be optimized using the well-developed varia-
tional MPS method [2,29,62]. The computational cost of
this step scales as Oðχ6Þ. The final step is the same as that
of the LN-TNR algorithm. As shown in Fig. 1(e), a coarse-
grained square lattice is obtained by contracting the tensor

FIG. 1. Three key steps of the Loop-TNR algorithm. (a) The
entanglement filtering step. Projectors are inserted to eliminate
local entanglements on the squares labeled with gray circles [see
(g) for details]. (c) The loop optimization step. Each of the shaded
squares is deformed to a octagon made up of 8 rank-3 tensors
with bond dimensions no greater than χ. The best approximation
is found by minimizing the cost function in (h). (e) The same
coarse graining step as in the standard LN-TNR algorithm.
(h) The cost function of the loop optimization can be regarded
as the distance between two MPS wave functions. The well-
developed variational MPS method is applied to minimize the
cost function.

PRL 118, 110504 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 MARCH 2017

110504-2



over the inner indices within the circles. The overall com-
putational cost of all the steps only scales as Oðχ6Þ, which
is significantly more efficient than other improved LN-
TNR methods, such as SRG/HOSRG algorithms [Oðχ7Þ∼
Oðχ10Þ [45–47]], and EV-TNR algorithms [Oðχ7Þ [55] and
Oðχ6Þ [56,63]]. Below, we demonstrate the advantages of
the Loop-TNR algorithm using the classical Ising model on
a square lattice.
Classical Ising model.—The partition function of

the 2D classical Ising model is given by Z ¼ P
fσg exp

ðβPhijiσiσjÞ. It can also be expressed as the contraction of
a 2D tensor network with χ ¼ 2 [38]. In this model, the
spins are localized on the links of the square lattice.
Each local tensor T ¼ TIsing

u;l;d;r has the following nonzero
components:

TIsing
1;2;1;2 ¼ e−4β; TIsing

2;1;2;1 ¼ e−4β; TIsing
1;1;1;1 ¼ e4β;

TIsing
2;2;2;2 ¼ e4β; others ¼ 1: ð2Þ

The first step is to compute the free energy of this model
with 250 spins, so that it saturates to the value of the
thermodynamic limit. Figure 2 shows the relative error of
the free energy per site at and away from the critical
temperature Tc. At the critical point [see Fig. 2(a)], the
error of Loop-TNR decays much faster than the error of
LN-TNR. When χ ≤ 16, the error of Loop-TNR decays
almost exponentially with χ. This demonstrates a significant
improvement over LN-TNR. In Fig. 2(b), the errors of Loop-
TNR remain almost constant for all temperatures near the
critical point. When χ ¼ 8, Loop-TNR has an accuracy in
the order of 10−7. At the same point LN-TNR has an
accuracy of 10−4–10−5. Other improved methods, such as
SRG and HOSRG [45–47], can reduce the error by up to 3
orders of magnitude at off-critical conditions, but by only 1
order of magnitude at criticality. The recently proposed
EV-TNR algorithm [55] can achieve the same accuracy with
the same “effective” bond dimensions in the octagon (but a
larger overall bond dimension [62]). However, Loop-TNR
has a lower computational cost than EV-TNR.

After applying several steps of Loop-TNR, we obtain an
approximate fixed-point tensor with proper normalization
and gauge fixing, which encodes the low-energy physics of
the critical system. To prevent gauge fixing at the final step,
C4 lattice symmetry may be imposed on the RG flow. This
produces a single rank-3 tensor that is approximately
invariant at criticality [62].
As proposed in Ref. [8], the transfer matrix shown in

Fig. 3(g) can be constructed, and the central charge and
lowest scaling dimensions determined from the eigenvalues
of the transfer matrix. When χ ¼ 24 and with 218 spins,
these conformal data have extremely high accuracies (up to
five digits):

c h1 h2 h3
Loop-TNR∶0.500001 0.1250001 1.000006 1.124994
EV-TNR∶0.50001 0.1250004 1.00009 1.12492

Exact∶1=2 1=8 1 9=8

FIG. 2. Comparison of the relative errors of the free energy per
site computed using LN-TNR and Loop-TNR. Results were
obtained on a square lattice with 250 spins. (a) Relative error as a
function of bond dimension χ at the critical point. (b) Relative
error as a function of temperature for off-critical Ising models.

FIG. 3. Comparison of central charge and scaling dimensions
for LN-TNR and Loop-TNR at different iteration steps. The red
dotted line denotes the central charge, the blue (light gray) solid
lines denote the scaling dimensions in the Z2-odd sector, and the
black solid lines denote the scaling dimensions in the Z2-even
sector. In the L ¼ 2 (L ¼ 4) case, a transfer matrix is constructed
using two (four) columns of tensors [shown in (g) and (h)]. The
central charge and scaling dimensions are determined from the
eigenvalues of the transfer matrix [8].
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For comparison, the central charge and the scaling dimen-
sions obtained using EV-TNR under the same conditions
are given [55] (here χ denotes the largest bond dimension
used in that scheme).
In addition to improving the accuracy of the central

charge and scaling dimensions, Loop-TNR also signifi-
cantly improves their stabilities. Figure 3 compares the
results from LN-TNR and Loop-TNR. In the LN-TNR case
shown in the left-hand column, the high-level scaling
dimensions start to merge with the low-level scaling
dimensions after a few iteration steps. This indicates that
the high-index “junk” starts to merge quickly with the low-
index approximate fixed-point tensor [62]. In Fig. 3(a), the
h ¼ 2 and h ¼ 2.125 scaling dimensions are destroyed by
the junk after 10 iteration steps. Correspondingly, LN-TNR
fails to produce the accurate scaling dimensions, even for
primary fields. In general, both stability and accuracy
deteriorate at higher scaling dimensions (or, equivalently,
higher-index tensor elements).
The conformal data are significantly improved using

Loop-TNR. As shown in the right-hand column of Fig. 3,
these data remain accurate up to 40 iteration steps in the
case of χ ¼ 16, and even longer when χ ¼ 32. Moreover,
the high-index junk is well separated from the low-index
scaling dimensions. By increasing χ, a greater number of
scaling dimensions beyond the primary fields can be
resolved from the approximate fixed-point tensors. As
shown in Figs. 3(d) and 3(b), the h ¼ 3 and h ¼ 3.125
scaling dimensions are clearly visible in the χ ¼ 32
simulation, while they are difficult to distinguish from
the high-index junk when χ ¼ 16.
We have shown that for higher bond dimensions, the

proper RG flow lasts longer. Thus, we believe that at the
infinite χ limit, Loop-TNR can determine an infinite
dimensional fixed-point tensor described by Ising CFT at
the continuum limit (with proper normalization and gauge
fixing). For instance, four columns of tensors may be used
to construct the transfer matrix [shown in Fig. 3(h)], which
is equivalent to using χ ¼ 256. As shown in Fig. 3(f), a
greater number of scaling dimensions can be evaluated,
and the accuracy is greatly improved. The result shown in
Fig. 3(f) suggests that the complete information of a CFT is
encoded in the approximate fixed-point tensor. If more
tensors are used to construct the transfer matrix, it is
possible to reconstruct the whole conformal tower to a
given accuracy. Moreover, we have found evidence that the
operator product expansion coefficients are also encoded in
the low-index approximate fixed-point tensors. How to
compute these coefficients will be discussed in future work.
Because the central charge, scaling dimensions, and oper-
ator product expansion coefficients of primary fields
constitute the complete set of data for a CFT, the low-
index approximate fixed-point tensors can completely
determine the low-energy physics with an emergent con-
formal symmetry. The high-index junk is subject to the

conformal symmetry-breaking perturbations introduced by
truncation errors, which cannot be prevented in any
numerical simulations with a finite χ.
Variational energy for a 2D quantum model.—Loop-

TNR can compute the physical quantities of 2D projected
entangled-pair states, especially those states with divergent
correlation lengths. We tested our algorithm by calculating
the variational energy of the D ¼ 3 PEPS proposed in
Ref. [64]. This is a variational resonating valence bond
ansatz for the J1 − J2 antiferromagnetic Heisenberg model
on a square lattice around the maximally frustrated regime
(J2 ¼ 0.5J1). The extrapolated ground state energy was
obtained in Ref. [64] using the boundary MPS method
[3,5,32,40,65], the value of which is shown as the black
dash-dot line in Fig. 4. The results of LN-TNR and Loop-
TNR were calculated using a 256-site system with periodic
boundary condition. Since this PEPS has a divergent
correlation length, the energy from LN-TNR is highly
frustrated, and far from the accurate value. Conversely, the
energy determined from Loop-TNR quickly converges to
the accurate value. Here, only 20 sweeps were carried out
when minimizing the cost function Eq. (1) by the varia-
tional MPS method [2,29]. Using more sweeps would have
improved the results.
Conclusions and discussions.—We have developed the

Loop-TNR algorithm, a coarse-graining transformation
based on loop optimizations, to significantly improve the
RG flow for both critical and off-critical systems. We
demonstrated the advantage of Loop-TNR using the
classical Ising model on a square lattice. High accuracy
and stability of the central charge and the lowest scaling
dimensions were observed at criticality. Furthermore, good
accuracy was achieved in the computation of the variational
energy of a frustrated 2D PEPS.
Thanks to the concept of loop optimization, we may

integrate the well-developed 1D algorithms with LN-TNR
to enhance its performance. The integration with iTEBD
[31] gives rise to GW-TNR [8], the integration with MERA

FIG. 4. Benchmark of the variational energy of theD ¼ 3 PEPS
proposed in Ref. [64] for the maximally frustrated J1 − J2
antiferromagnetic Heisenberg model on a square lattice (with
J2 ¼ 0.5J1). Here, we consider a 256 site system with PBC.
Because the benchmark energy (dashed line) is an extrapolation
for infinite systems, it could be slightly lower than the actual
variational energy for 256 sites.
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[33] results in EV-TNR [55], and now the integration with
variational MPS [29] leads to Loop-TNR. From the view-
point of quantum field theory, our way of removing local
entanglement is equivalent to integrating out local modes
during the RG transformation. As a result, Loop-TNR
works better than the algorithms based on tree tensor
networks (such as LN-TNR and SRG/HOSRG), where
the local modes are only removed by a hard cut. For future
works, we will explore the structure of the fixed-point
tensor for a CFT. The 3D generalization of Loop-TNR is
also a promising direction, where the “loop optimization”
will be replaced by the “membrane optimization.”
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