4 research outputs found

    Synthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces

    Get PDF
    Scaling graphene down to nanoribbons is a promising route for the implementation of this material into devices. Quantum confinement of charge carriers in such nanostructures, combined with the electric field-induced break of symmetry in AB-stacked bilayer graphene, leads to a band gap wider than that obtained solely by this symmetry breaking. Consequently, the possibility of fabricating AB-stacked bilayer graphene nanoribbons with high precision is very attractive for the purposes of applied and basic science. Here we show a method, which includes a straightforward air annealing, for the preparation of quasi-free-standing AB-bilayer nanoribbons with different widths on SiC(0001). Furthermore, the experiments reveal that the degree of disorder at the edges increases with the width, indicating that the narrower nanoribbons are more ordered in their edge termination. In general, the reported approach is a viable route towards the large-scale fabrication of bilayer graphene nanostructures with tailored dimensions and properties for specific applications

    Coincident-site lattice matching during van der Waals epitaxy

    Get PDF
    Van der Waals (vdW) epitaxy is an attractive method for the fabrication of vdW heterostructures. Here Sb2Te3 films grown on three different kind of graphene substrates (monolayer epitaxial graphene, quasi freestanding bilayer graphene and the SiC (6√3 × 6√3)R30° buffer layer) are used to study the vdW epitaxy between two 2-dimensionally (2D) bonded materials. It is shown that the Sb2Te3 /graphene interface is stable and that coincidence lattices are formed between the epilayers and substrate that depend on the size of the surface unit cell. This demonstrates that there is a significant, although relatively weak, interfacial interaction between the two materials. Lattice matching is thus relevant for vdW epitaxy with two 2D bonded materials and a fundamental design parameter for vdW heterostructures

    Molecular Beam Epitaxy of GaN Nanowires on Epitaxial Graphene

    No full text
    We demonstrate an all-epitaxial and scalable growth approach to fabricate single-crystalline GaN nanowires on graphene by plasma-assisted molecular beam epitaxy. As substrate, we explore several types of epitaxial graphene layer structures synthesized on SiC. The different structures differ mainly in their total number of graphene layers. Because graphene is found to be etched under active N exposure, the direct growth of GaN nanowires on graphene is only achieved on multilayer graphene structures. The analysis of the nanowire ensembles prepared on multilayer graphene by Raman spectroscopy and transmission electron microscopy reveals the presence of graphene underneath as well as in between nanowires, as desired for the use of this material as contact layer in nanowire-based devices. The nanowires nucleate preferentially at step edges, are vertical, well aligned, epitaxial, and of comparable structural quality as similar structures fabricated on conventional substrates

    Educación jurídica e innovación tecnológica: un ensayo crítico

    No full text
    corecore