26 research outputs found

    Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations.

    Get PDF
    PurposeThe phenotypic manifestations of cerebral cavernous malformation disease caused by rare PDCD10 mutations have not been systematically examined, and a mechanistic link to Rho kinase-mediated hyperpermeability, a potential therapeutic target, has not been established.MethodsWe analyzed PDCD10 small interfering RNA-treated endothelial cells for stress fibers, Rho kinase activity, and permeability. Rho kinase activity was assessed in cerebral cavernous malformation lesions. Brain permeability and cerebral cavernous malformation lesion burden were quantified, and clinical manifestations were assessed in prospectively enrolled subjects with PDCD10 mutations.ResultsWe determined that PDCD10 protein suppresses endothelial stress fibers, Rho kinase activity, and permeability in vitro. Pdcd10 heterozygous mice have greater lesion burden than other Ccm genotypes. We demonstrated robust Rho kinase activity in murine and human cerebral cavernous malformation vasculature and increased brain vascular permeability in humans with PDCD10 mutation. Clinical phenotype is exceptionally aggressive compared with the more common KRIT1 and CCM2 familial and sporadic cerebral cavernous malformation, with greater lesion burden and more frequent hemorrhages earlier in life. We first report other phenotypic features, including scoliosis, cognitive disability, and skin lesions, unrelated to lesion burden or bleeding.ConclusionThese findings define a unique cerebral cavernous malformation disease with exceptional aggressiveness, and they inform preclinical therapeutic testing, clinical counseling, and the design of trials.Genet Med 17 3, 188-196

    Juvenile stroke in combined syndrome of hereditary hemorrhagic telangiectasia and juvenile polyposis

    No full text
    In 2004 a new condition called \u201chereditary hemorrhagic telangiectasia\u2013juvenile polyposis\u201d (HHT\u2013JP) was described, in which symptoms of the autosomal dominant diseases HHT (Osler\u2013Rendu disease) and JP overlap, both genetically and clinically. In this syndrome, juvenile polyps and anemia are the predominant clinical features, although affected patients display symptoms of both diseases, and a high prevalence of visceral arteriovenous malformations (AVMs) has been reported. Stroke secondary to pulmonary AVMs (PAVMs) is one of the possible neurological manifestations of HHT. Interestingly, the underlying pathophysiological mechanism of stroke in this rare disease is exemplary of strokes due to paradoxical embolism. To our knowledge, only two patients with HHT\u2013JP syndrome presenting with stroke have been reported, but no details of the related clinical picture can be found in the literature. We therefore report on a case of juvenile stroke associated with PAVMs as the clinical presentation of HHT\u2013JP overlap syndrome

    Two common endoglin mutations in families with hereditary hemorrhagic telangiectasia in the Netherlands Antilles:evidence for a founder effect

    No full text
    Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant bleeding disorder characterized by localized angiodysplasia. Mutations in either of two genes, endoglin or ALK-1, can cause HHT. Both genes encode putative receptors for the transforming growth factor-β superfamily of ligands. Many mutations in each gene have been identified in HHT kindreds from around the world, and with few exceptions mutations are unique and family specific. The prevalence of HHT in the Leeward Islands of the Netherlands Antilles is possibly the highest of any geographical location. We wished to establish whether this high prevalence is due to a genetic founder effect or to multiple mutational events. HHT kindreds from the Netherlands Antilles and The Netherlands were screened for mutations in the two genes associated with HHT. Haplotype analysis of a 5-cM region on chromosome 9 flanking the endoglin gene revealed three distinct disease haplotypes in the ten Antillean families studied. Seven of these families share a splice-site mutation in exon 1 of endoglin. Two other Antillean families share a missense mutation in exon 9a of endoglin. This mutation was also found in a Dutch family that shares the same disease haplotype as the Antillean families with this mutation. Thus it appears that HHT in the Netherlands Antilles is due to a limited number of ancestral mutations in the endoglin gene, and that one of these mutations was introduced into the African slave population by a Dutch colonist. The limited scope of mutations suggests that a presymptomatic screening program for HHT would be feasible in this population.</p

    Single-nucleus DNA sequencing reveals hidden somatic loss-of-heterozygosity in Cerebral Cavernous Malformations

    No full text
    Cerebral Cavernous Malformations (CCMs) are vascular malformations of the central nervous system which can lead to moderate to severe neurological phenotypes in patients. A majority of CCM lesions are driven by a cancer-like three-hit mutational mechanism, including a somatic, activating mutation in the oncogene PIK3CA, as well as biallelic loss-of-function mutations in a CCM gene. However, standard sequencing approaches often fail to yield a full complement of pathogenic mutations in many CCMs. We suggest this reality reflects the limited sensitivity to identify low-frequency variants and the presence of mutations undetectable with bulk short-read sequencing. Here we report a single-nucleus DNA-sequencing approach that leverages the underlying biology of CCMs to identify lesions with somatic loss-of-heterozygosity, a class of such hidden mutations. We identify an alternative genetic mechanism for CCM pathogenesis and establish a method that can be repurposed to investigate the genetic underpinning of other disorders with multiple somatic mutations

    Natural genetic variation of integrin alpha L (Itgal) modulates ischemic brain injury in stroke.

    Get PDF
    During ischemic stroke, occlusion of the cerebrovasculature causes neuronal cell death (infarction), but naturally occurring genetic factors modulating infarction have been difficult to identify in human populations. In a surgically induced mouse model of ischemic stroke, we have previously mapped Civq1 to distal chromosome 7 as a quantitative trait locus determining infarct volume. In this study, genome-wide association mapping using 32 inbred mouse strains and an additional linkage scan for infarct volume confirmed that the size of the infarct is determined by ancestral alleles of the causative gene(s). The genetically isolated Civq1 locus in reciprocal recombinant congenic mice refined the critical interval and demonstrated that infarct size is determined by both vascular (collateral vessel anatomy) and non-vascular (neuroprotection) effects. Through the use of interval-specific SNP haplotype analysis, we further refined the Civq1 locus and identified integrin alpha L (Itgal) as one of the causative genes for Civq1. Itgal is the only gene that exhibits both strain-specific amino acid substitutions and expression differences. Coding SNPs, a 5-bp insertion in exon 30b, and increased mRNA and protein expression of a splice variant of the gene (Itgal-003, ENSMUST00000120857), all segregate with infarct volume. Mice lacking Itgal show increased neuronal cell death in both ex vivo brain slice and in vivo focal cerebral ischemia. Our data demonstrate that sequence variation in Itgal modulates ischemic brain injury, and that infarct volume is determined by both vascular and non-vascular mechanisms

    A second locus for hereditary hemorrhagic telangiectasia maps to chromosome 12

    No full text
    Hereditary hemorrhagic telangiectasia (HHT) or Osler-Rendu-Weber (ORW) disease is an autosomal dominant vascular dysplasia. Initial linkage studies identified an ORW gene localized to 9q33-q34 but with some families clearly excluding this region. A probable correlation in clinical phenotype between the 9q3-linked families and unlinked families was described with a significantly lower incidence of pulmonary arteriovenous malformations observed in the unlinked families. In this study we examined four unrelated ORW families for which linkage to chromosome 9q33-q34 has been previously excluded. Linkage was established for all four families to markers on chromosome 12, with a combined maximum lod score of 10.77 (θ = 0.04) with D12S339. Mapping of crossovers using haplotype analysis indicated that the candidate region lies in an 11-cm interval between D12S34S and D12S339, in the pericentromeric region of chromosome 12. A map location for a second ORW locus is thus established that exhibits a significantly reduced incidence of pulmonary involvement.</p
    corecore