30 research outputs found

    Summer Sea Ice Concentration, Motion, and Thickness Near Areas of Proposed Offshore Oil and Gas Development in the Canadian Beaufort Sea – 2009

    Get PDF
    This study was motivated by the potential development of offshore oil exploration leases in the Canadian Southern Beaufort Sea, an area within the Inuvialuit Settlement Region. Sea ice concentration, extent, motion, and thickness data are vital to the success of potential oil operations in this region, and relevant data cannot be gleaned from larger-scale hemispheric studies. We therefore undertook regionally specific sea ice analyses in the southern Beaufort Sea during the summer drilling season (July, August, and September) in 2009 and over the long-term (1996 – 2010). On average, the Canadian oil lease areas contain mostly old sea ice during the drilling season and have not experienced significant decreasing trends in total or old sea ice. The average sea ice motion in the region for the period was anti-cyclonic at 20 – 25 cm·s-1, acting to transport sea ice southward toward the lease areas. Summer 2009 was used as a case study of regional ice concentration, motion, and thickness and to compare September sea ice thickness measurements to data collected in April 2009. In the summer of 2009, old sea ice was the predominant ice type in the lease areas. Sea ice motion was anti-cyclonic and faster than the long-term average, reaching 60 cm·s-1 west of Banks Island and across the north end of the lease areas. September 2009 sea ice thickness (mean = 1.03 m, σ = 0.97 m) was modal about the 0.20 – 0.29 m thickness bin. The sea ice thickness distri­bution was spatially variable, with the thickest ice occurring at the north end of the study area, in an area dominated by high old ice concentrations. Ice thicknesses greater than 10 m (the upper limit our instruments could measure) were encountered. Thinner sea ice predominated at the periphery of the core Beaufort Sea multi-year pack. Near the oil lease areas, the sea ice thickness distributions were shifted left on the histogram in comparison to those farther north, resulting in a greater proportion of relatively thick sea ice due to the thermodynamic loss of thinner (< 1.5 m) first-year ice during its southward movement. After enduring a summer’s melt, however, this thicker ice at the south end of the study region had thinned in comparison to the ice at the north end.La présente étude a été motivée par la mise en valeur potentielle des concessions d’exploration pétrolière au large de la mer de Beaufort, dans la partie sud canadienne, un endroit qui fait partie de la région désignée des Inuvialuit. Les données relatives à la concentration, à l’étendue, au déplacement et à l’épaisseur de la glace de mer sont essentielles à la réussite de l’exploitation éventuelle du pétrole dans cette région, et les données pertinentes ne peuvent être dépouillées à partir d’études hémisphériques réalisées à grande échelle. Par conséquent, nous avons entrepris de faire des analyses particulièrement régionales de la glace de mer du sud de la mer de Beaufort pendant la saison de forage d’été (juillet, août et septembre) en 2009 de même que sur une plus longue période (1996-2010). En moyenne, les régions visées par les concessions pétrolières canadiennes renferment principalement de la vieille glace de mer pendant la saison de forage, et elles n’enregistrent pas d’importantes tendances à la baisse sur le plan de l’ensemble de la glace de mer ou de la vieille glace de mer. Dans la région, le déplacement moyen de la glace de mer pendant la période était anticyclonique à 20 25 cm·s-1, ce qui avait pour effet de transporter la glace de mer vers le sud et vers les concessions. L’été 2009 nous a servi d’étude de cas en matière de concentration, de déplacement et d’épaisseur de la glace régionale, et nous a permis de comparer les mesures de l’épaisseur de la glace de mer de septembre aux données recueillies en avril 2009. À l’été 2009, la vieille glace de mer représentait le type de glace prédominant dans les concessions. Le déplacement de la glace de mer était anticyclonique et se faisait plus vite que la moyenne à long terme, atteignant ainsi 60 cm·s-1 à l’ouest de l’île Banks et à la hauteur du nord de la zone de concessions. En septembre 2009, l’épaisseur de la glace de mer (moyenne = 1,03 m, σ = 0,97 m) était modale à la hauteur de la classe de l’épaisseur 0,20 – 0,29 m. La répartition de l’épaisseur de la glace de mer variait en fonction de l’emplacement, la glace la plus épaisse se trouvant du côté nord de la région étudiée, dans une zone dominée par de fortes concentrations de vieille glace. La glace atteignait des épaisseurs de plus de 10 m (la limite maximale que nos instruments pouvaient mesurer) par endroits. Une glace de mer plus mince prédominait la périphérie du noyau de la banquise pluriannuelle de la mer de Beaufort. Près de la zone de concessions pétrolières, les répartitions d’épaisseurs de glace de mer se sont déplacées vers la gauche sur l’histogramme comparativement à celles plus au nord, ce qui a donné une plus grande proportion de glace de mer relativement épaisse en raison de la perte thermodynamique de la glace plus mince de première année (< 1,5 m) pendant son déplacement vers le sud. Cependant, après avoir enduré la fonte d’un été, la glace plus épaisse du côté sud de la région à l’étude s’était amincie compara­tivement à la glace se trouvant du côté nord

    Landfast Sea Ice Conditions in the Canadian Arctic: 1983 – 2009

    Get PDF
    We used Canadian Ice Service (CIS) digital charts from 1983 to 2009 to create a climatology of landfast sea ice in the Canadian Arctic. The climatology characterized the spatial distribution and variability of landfast ice through an average annual cycle and identified the mean onset date, breakup date, and duration of landfast ice. Trends in date and duration of onset and breakup were calculated over the 26-year period on the basis of CIS regions and sub-regions. In several sub-regions— particularly in the Canadian Arctic Archipelago—we calculated significant trends towards later landfast ice onset or earlier breakup, or both. These later onset and earlier breakup dates translated into significant decreases in landfast ice duration for many areas of the Canadian Arctic. For communities located in the most affected areas, including Tuktoyaktuk, Kugluktuk, Cambridge Bay, Gjoa Haven, Arctic Bay, and Pond Inlet, this shorter landfast ice season is of significant social, cultural, and economic importance. Landfast sea-ice duration in the interior of the Northwest Passage has not undergone any statistically significant decrease over the time series.Nous nous sommes appuyés sur les cartes numériques du Service canadien des glaces (SCG) pour les années 1983 à 2009 afin de produire la climatologie de la glace de mer de l’Arctique canadien. La climatologie permet de caractériser la distribution spatiale et la variabilité de la glace de mer au moyen d’un cycle annuel moyen, et de déterminer la date moyenne du commencement, la date de la débâcle et la durée de la glace de mer. Les tendances en matière de dates et de durées relativement au commencement et à la débâcle ont été calculées sur la période de 26 ans en fonction des régions visées par le SCG et des sous-régions. Dans plusieurs sous-régions — plus particulièrement dans l’archipel Arctique canadien — nous avons calculé d’importantes tendances indiquant des dates de commencement plus tardives de la glace de mer ou des dates de débâcle plus hâtives, ou les deux. Ces dates plus hâtives et plus tardives se traduisent par la réduction considérable de la durée de la glace de mer en maints endroits de l’Arctique canadien. Pour les localités situées dans la plupart des régions touchées, dont Tuktoyaktuk, Kugluktuk, Cambridge Bay, Gjoa Haven, Arctic Bay et Pond Inlet, cette saison de glace de mer plus courte revêt une grande importance sur les plans social, culturel et économique. Du point de vue statistique, la durée de la glace de mer à l’intérieur du passage du Nord-Ouest n’a pas connu de réduction importante au cours de cette période

    Increasing Multiyear Sea Ice Loss in the Beaufort Sea: A New Export Pathway for the Diminishing Multiyear Ice Cover of the Arctic Ocean

    Get PDF
    Historically, multiyear sea ice (MYI) covered a majority of the Arctic and circulated through the Beaufort Gyre for years. However, increased ice melt in the Beaufort Sea during the early 2000s was proposed to have severed this circulation. Constructing a regional MYI budget from 1997 to 2021 reveals that MYI import into the Beaufort Sea has increased year-round, yet less MYI now survives through summer and is transported onwards in the Gyre. Annual average MYI loss quadrupled over the study period and increased from ∼7% to ∼33% of annual Fram Strait MYI export, while the peak in 2018 (385,000 km2) was similar in magnitude to Fram Strait MYI export. The ice-albedo feedback coupled with the transition toward younger thinner MYI is responsible for the increased MYI loss. MYI transport through the Beaufort Gyre has not been severed, but it has been reduced so severely to prevent it from being redistributed throughout the Arctic Ocean

    Micrometeorological and Thermal Control of Frost Flower Growth and Decay on Young Sea Ice

    Get PDF
    Frost flowers are transient crystal structures that form on new and young sea ice surfaces. They have been implicated in a variety of biological, chemical, and physical processes and interactions with the atmosphere at the sea ice surface. We describe the atmospheric and radiative conditions and the physical and thermal properties of the sea ice and atmosphere that form, decay, and destroy frost flowers on young sea ice. Frost flower formation occurred during a high-pressure system that caused air temperatures to drop to −30˚C, with relative humidity of 70% (an undersaturated atmosphere), and very calm wind conditions. The sea ice surface temperature at the time of frost flower initiation was 10˚–13˚C warmer than the air temperature. Frost flowers grew on nodules raised above the mean surface height by 5 mm, which were 4˚–6˚C colder than the bare, brine-wetted, highly saline sea ice surface that provided the necessary moisture. The cold nodules created potential water vapour supersaturation zones above them with respect to air over the brine skim. Frost flowers formed and grew overnight in the absence of shortwave radiation, while the net longwave radiation was negative and dominated the net all-wave radiation balance at the surface. The observed crystal habits of the frost flowers were long needles, betraying their origin from the vapour phase at temperatures between −20˚C and −30˚C. After a night of growth, frost flowers decayed in association with increased solar radiation, a net surface radiation balance of 0 W m-2, increased air and surface temperatures, increased wind speed, and decreased relative humidity. We hypothesize that these conditions increased vertical mixing, which eroded near-surface water vapour saturation and initiated sublimation. The frost flowers finally were rapidly destroyed by snowfall.Les fleurs de glace sont des structures cristallines transitoires qui se forment sur des surfaces de glace de mer nouvelles et jeunes. Elles découlent de divers processus et interactions biologiques, chimiques et physiques avec l’atmosphère, à la surface de la glace de mer. Nous décrivons les conditions atmosphériques et radiatives de même que les propriétés physiques et thermiques de la glace de mer qui forment, détériorent et détruisent les fleurs de glace sur la jeune glace de mer. La formation de fleurs de glace s’est produite lorsqu’un système de haute pression a fait baisser les températures de l’air à −30 ˚C, avec une humidité relative de 70 % (atmosphère sous-saturée) et un régime des vents très calme. À l’amorçage des fleurs de glace, la température à la surface de la glace de mer était de 10˚ à 13 ˚C plus chaude que la température de l’air. Les fleurs de glace se sont formées sur des nodules élevés au-dessus de la hauteur moyenne de la surface dans une mesure de 5 mm, ce qui était entre 4˚ et 6 ˚C plus froid que la surface de glace de mer brute, saumurée et fortement saline qui a fourni l’humidité nécessaire. En ce qui a trait à l’air au-dessus de l’écume de saumure, les nodules de froid ont créé des zones potentielles de sursaturation de vapeur d’eau au-dessus. Des fleurs de glace se sont formées et ont grossi pendant la nuit, en l’absence de rayonnement de courtes longueurs d’onde, tandis que le rayonnement net de grandes longueurs d’onde était négatif et dominait l’équilibre du rayonnement net de toutes ondes à la surface. L’habitus cristallin observé dans les fleurs de glace prenait la forme de longues aiguilles, trahissant son origine de la phase vapeur à des températures variant de −20 ˚C à −30 ˚C. Après une nuit de croissance, les fleurs de glace se sont détériorées en présence du rayonnement solaire accru, du bilan radiatif de la surface de 0 W m-2, des températures accrues de l’air et de la surface, de la plus grande vitesse du vent et de l’humidité relative réduite. Nous formulons l’hypothèse que ces conditions ont eu pour effet d’augmenter le mélange vertical, ce qui a érodé la saturation de vapeur d’eau près de la surface et déclenché la sublimation. Par la suite, les fleurs de glace ont été rapidement détruites par la chute de neige

    Investigations into Frost Flower Physical Characteristics and the C-Band Scattering Response

    Get PDF
    A dedicated study on the physical characteristics and C-band scattering response of frost-flower-covered sea ice was performed in an artificial sea ice mesocosm over a 36-h period in January 2017. Meteorological conditions were observed and recorded automatically at the facility when the sea ice grew and frost flowers formed while the C-band scattering measurements were conducted continuously over a range of incidence angles. Surface roughness was characterized using a LiDAR. During the experiment, frost flowers did not initially form on the extremely smooth ice surface even though suitable meteorological conditions prevailed during their development (low air temperature, low near-surface wind speed, and high near-surface relative humidity). This provides evidence that both the presence of (i) liquid brine at the surface and (ii) raised nodules as nucleation points are required to enable frost flower initiation. As the ice thickened, we observed that raised nodules gradually appeared, frost flowers formed, and flowers subsequently spread to cover the surface over a six-hour period. In contrast to previous experiments, the frost flower layer did not become visibly saturated with liquid brine. The C-band scattering measurements exhibited increases as high as 14.8 dB (vertical polarization) in response to the frost flower formation with low incidence angles (i.e., 25°) showing the largest dynamic range. Co-polarization ratios responded to the physical and thermodynamic changes associated with the frost flower formation process. Our results indicate that brine expulsion at the sea ice surface and frost flower salination can have substantial temporal variability, which can be detected by scatterometer time-series measurements. This work contributes towards the operational satellite image interpretation for Arctic waters by improving our understanding of the highly variable C-band microwave scattering properties of young sea ice types

    Theory of optomechanics: Oscillator-field model of moving mirrors

    Full text link
    In this paper we present a model for the kinematics and dynamics of optomechanics which describe the coupling between an optical field, here modeled by a massless scalar field, and the internal (e.g., determining its reflectivity) and mechanical (e.g., displacement) degrees of freedom of a moveable mirror. As opposed to implementing boundary conditions on the field we highlight the internal dynamics of the mirror which provides added flexibility to describe a variety of setups relevant to current experiments. The inclusion of the internal degrees of freedom in this model allows for a variety of optical activities of mirrors from those exhibiting broadband reflective properties to the cases where reflection is suppressed except for a narrow band centered around the characteristic frequency associated with the mirror's internal dynamics. After establishing the model and the reflective properties of the mirror we show how appropriate parameter choices lead to useful optomechanical models such as the well known Barton-Calogeracos model [G. Barton and A. Calogeracos, Ann. Phys. 238, 227 (1995)] and the important yet lesser explored nonlinear models (e.g., NxNx coupling) for small photon numbers NN, which present models based on side-band approximations [H. Kimble et al., Phys. Rev. D 65, 022002 (2001)] cannot cope with. As a simple illustrative application we consider classical radiation pressure cooling with this model. To expound its theoretical structure and physical meanings we connect our model to field-theoretical models using auxiliary fields and the ubiquitous Brownian motion model of quantum open systems. Finally we describe the range of applications of this model, from a full quantum mechanical treatment of radiation pressure cooling, quantum entanglement between macroscopic mirrors, to the backreaction of Hawking radiation on black hole evaporation in a moving mirror analog.Comment: 27 pages, 3 figure

    Melt Procedure Affects the Photosynthetic Response of Sea Ice Algae

    Get PDF
    The accuracy of sea ice algal production estimates is influenced by the range of melting procedures used in studies to obtain a liquid sample for incubation, particularly in relation to the duration of melt and the approach to buffering for osmotic shock. In this research, ice algal photophysiology from 14C incubations was compared in field samples prepared by three melt procedures: (i) a rapid ≤ 4 h melt of the bottommost ( < 1 cm) ice algal layer scraped into a large volume of filtered seawater (salinity 27–30), (ii) melt of a bottom 5 cm section diluted into a moderate volume of filtered seawater over 24 h (salinity 20–24), and (iii) melt of a bottom 5 cm section without any filtered seawater dilution over about 48 h (salinity 10–12). Maximum photosynthetic rate, photosynthetic efficiency and production at zero irradiance were significantly affected by the melt treatment employed in experiments. All variables were greatest in the highly diluted scrape sample and lowest in the bulk-ice samples melted in the absence of filtered seawater. Laboratory experiments exposing cultures of the common sea ice diatom Nitzschia frigida to different salinities and light conditions suggested that the field-based responses can be attributed to the rapid ( < 4 h) adverse effects of exposing cells to low salinities during melt without dilution. The observed differences in primary production between melt treatments were estimated to account for over 60% of the variability in production estimates reported for the Arctic. Future studies are strongly encouraged to replicate salinity conditions representative of in situ values during the melting process to minimize hypoosmotic stress, thereby most accurately estimating primary production

    Increasing Multiyear Sea Ice Loss in the Beaufort Sea: A New Export Pathway for the Diminishing Multiyear Ice Cover of the Arctic Ocean

    Get PDF
    Historically, multiyear sea ice (MYI) covered a majority of the Arctic and circulated through the Beaufort Gyre for years. However, increased ice melt in the Beaufort Sea during the early 2000s was proposed to have severed this circulation. Constructing a regional MYI budget from 1997 to 2021 reveals that MYI import into the Beaufort Sea has increased year-round, yet less MYI now survives through summer and is transported onwards in the Gyre. Annual average MYI loss quadrupled over the study period and increased from ∼7% to ∼33% of annual Fram Strait MYI export, while the peak in 2018 (385,000 km2) was similar in magnitude to Fram Strait MYI export. The ice-albedo feedback coupled with the transition toward younger thinner MYI is responsible for the increased MYI loss. MYI transport through the Beaufort Gyre has not been severed, but it has been reduced so severely to prevent it from being redistributed throughout the Arctic Ocean
    corecore