276 research outputs found

    Ship self-propulsion performance prediction by using OpenFOAM and different simplified propeller models

    Get PDF
    Classic hydrodynamics-related ship design problems can nowadays be approached by CFD viscous solvers. Ship self-propulsion performance prediction represents one of the most interesting problems in this framework. The capabilities of CFD codes to resolve accurately the separate problems (open water propeller performance and hull resistance) have been demonstrated over the last decades. The complexity of the combined problem (and, in turn, the required computational time) has restricted its solution to research applications still far from everyday industrial practice. Some approaches have been developed to reduce the computational burden, based e.g. on simple actuator-disk theory or, recently, on BEM/RANS coupled solvers. In this respect, different approaches exploiting the open-source solver OpenFOAM are presented, focusing on the main self-propulsion parameters. In addition, a new numerical strategy able to provide more information compared to classical simplified approaches, is herein presented and validated against experimental measurements on the well-known Kriso Container Ship (KCS) test case

    Underwater Sound Characteristics of a Ship with Controllable Pitch Propeller

    Get PDF
    The time-dependent spectral characteristics of underwater sound radiated by an oceanic vessel have complex dependencies on ship machinery, propeller dynamics, and the hydrodynamics of the ship exhaust and motion, as well as onboard activities. Here, the underwater sound radiated by a ship equipped with a controllable pitch propeller (CPP) is analyzed and quantified via its (i) power spectral density for signal energetics, (ii) temporal coherence for machinery tonal sound, and (iii) spectral coherence for propeller amplitude-modulated cavitation noise. Frequency-modulated (FM) tonal signals are also characterized in terms of their frequency variations. These characteristics are compared for different propeller pitch ratios, ranging from 20% to 82% at a fixed number of propeller revolutions per minute (RPM). The efficacy and robustness of ship parameter estimation at different pitches are discussed. Finally, an analysis of one special measurement is provided: propeller pitch and RPM over the duration of the measurement when the ship changes speed. The 50% pitch was found to be a crucial point for this ship, around which the tonal characteristics of its underwater radiated sound attain their peak values while broadband sound and associated spectral coherences are at a minimum. The findings here elucidate the effects of pitch variation on underwater sound radiated by ships with controllable pitch propellers and has applications in ship design and underwater noise mitigation

    Sheep predation : characteristics and risk factors

    Get PDF
    Predation has always been an important problem in extensive sheep farms, causing serious economic losses to the farmers. Official predation reports have recently been decreasing in the District of Pisa, in spite of the presence of two wolf packs in the area. The aim of the present research was to obtain reliable information on the characteristics of predation and to estimate the effectiveness of existing prevention methods in sheep farms of the southern District of Pisa, in order to set up predictive models for an improved and more focused prevention plan and support interventions by public authorities. On-farm surveys were carried out in 73 semi-extensive sheep farms. Predation events were reported by 75.3% of the farmers. Wolves seemed to be responsible for most of those events, although their actual role could be confirmed only in 34% of cases. Most of the events occurred in spring and 85.1% of them were concentrated during night time. The average number of sheep killed during each attack was 7.05. In 22.3% of cases, the number of sheep killed was 65 10. Proximity to protected areas and the presence of thick vegetation cover significantly affected the probability of a farm being subjected to chronic predation. Farm size was significantly higher in those cases. No clear indication about the effectiveness of prevention methods could be obtained from our survey. The results of this investigation highlighted the impact of predation in the Southern District of Pisa and emphasized the need for finding technical and political solutions to this problem. Attention should be focused on large farms, with thick vegetation cover and located close to protected areas. Further investigations should be carried out in order to test the effectiveness of suitable prevention methods in these farms

    Airborne Sound Power Levels and Spectra of Noise Sources in Port Areas

    Get PDF
    Airborne port noise has historically suffered from a lack of regulatory assessment compared to other transport infrastructures. This has led to several complaints from citizens living in the urban areas surrounding ports, which is a very common situation, especially in countries facing the Mediterranean sea. Only in relatively recent years has an effort been made to improve this situation, which has resulted in a call for and financing of numerous international cooperation research projects, within the framework of programs such as EU FP7, H2020, ENPI-CBC MED, LIFE, and INTERREG. These projects dealt with issues and aspects of port noise, which is an intrinsically tangled problem, since several authorities and companies operate within the borders of ports, and several different noise sources are present at the same time. In addition, ship classification societies have recently recognized the problem and nowadays are developing procedures and voluntary notations to assess the airborne noise emission from marine vessels. The present work summarizes the recent results of research regarding port noise sources in order to provide a comprehensive database of sources that can be easily used, for example, as an input to the noise mapping phase, and can subsequently prevent citizens' exposure to noise

    Source characterization guidelines for noise mapping of port areas

    Get PDF
    Maritime transport for both passengers and freight is continuously increasing and, consequently, the global attention toward its sustainability is growing. Ships offer advantages in terms of environmental impact compared to other transportation systems but the increasing traffic volume is expected to increase pollutants. Noise produced in port areas has been neglected for too long, until the INTERREG Maritime programme Italy-France 2014\u20132020 has brought to light how citizen complaints are emerging for some of the main ports in the Mediterranean. However, port noise prevention and management is difficult as knowledge on specific sources is very limited in the literature. Furthermore, on field measurements are difficult to be performed given the complexity of the port area, where multiple types of sound emitters mix and confuse each other. Noise maps represent the first important step in order to align ports to the requirements set by the Environmental Noise Directive to the transportation infrastructures. Once computed, they are an excellent tool supporting port management towards the reduction of citizens\u2019 noise exposure while ensuring traffic growth. The present paper reports a guideline for the characterization of noise sources needed as inputs for the noise maps, as developed in the framework of the INTERREG Maritime programme Italy-France 2014\u20132020. On the basis of the current state of the art, a procedure has been elaborated for different categories of noise sources acting in port, ranging from stationary to moving ships, from mooring operations to loading/unloading operations, from industrial activities to road and railway traffic

    Multi-wavelength astronomical searches for primordial black holes

    Get PDF
    If primordial black holes of O(1–100) M_⊙ constitute a significant portion of the dark matter in the Universe, they should be very abundant in our Galaxy. We present here a detailed analysis of the radio and X-ray emission that these objects are expected to produce due to the accretion of gas from the interstellar medium. With respect to previous studies, we relax the assumption of a monochromatic mass function, and introduce an improved treatment of the physics of gas accretion onto isolated, moving compact objects, based on a set of state-of-the-art numerical simulations. By comparing our predictions with known radio and X-ray sources in the Galactic center region, we show that the maximum relic density of primordial black holes in the mass range of interest is ~ 10^(−3) smaller than that of dark matter. The new upper bound is two orders of magnitude stronger with respect to previous results, based on a conservative phenomenological treatment of the accretion physics. We also provide a comprehensive critical discussion on the reliability of this bound, and on possible future developments in the field. We argue in particular that future multi-wavelength searches will soon start to probe the galactic population of astrophysical black holes

    Role of phase synchronisation in turbulence

    Get PDF
    The role of the phase dynamics in turbulence is investigated. As a demonstration of the importance of the phase dynamics, a simplified system is used, namely the one-dimensional Burgers equation, which is evolved numerically. The system is forced via a known external force, with two components that are added into the evolution equations of the amplitudes and the phase of the Fourier modes, separately. In this way, we are able to control the impact of the force on the dynamics of the phases. In the absence of the direct forcing in the phase equation, it is observed that the phases are not stochastic as assumed in the Random Phase Approximation (RPA) models, and in contrast, the non-linear couplings result in intermittent locking of the phases to ± π/2. The impact of the force, applied purely on the phases, is to increase the occurrence of the phase locking events in which the phases of the modes in a wide k range are now locked to ± π/2, leading to a change in the dynamics of both phases and amplitudes, with a significant localization of the real space flow structures

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'
    • 

    corecore