4,929 research outputs found

    Characterization of New TPS Resins

    Get PDF
    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered such as: cyanate ester resin, polyimide, polybenzoxazine (PBZ), and polyimidazole (PBI).Thermal and mechanical properties of these four resin systems were characterized and compared with phenolic resin

    Thermal Testing of Woven TPS Materials in Extreme Entry Environments

    Get PDF
    NASAs future robotic missions to Venus and outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of current mid density ablators (PICA or Avcoat). Therefore mission planners assume the use of a fully dense carbon phenolic heatshield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust TPS however its high density and thermal conductivity constrain mission planners to steep entries, high heat fluxes, high pressures and short entry durations, in order for CP to be feasible from a mass perspective. In 2012 the Game Changing Development Program in NASAs Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System to meet the needs of NASAs most challenging entry missions. The high entry conditions pose certification challenges in existing ground based test facilities. Recent updates to NASAs IHF and AEDCs H3 high temperature arcjet test facilities enable higher heatflux (2000 Wcm2) and high pressure (5 atm) testing of TPS. Some recent thermal tests of woven TPS will be discussed in this paper. These upgrades have provided a way to test higher entry conditions of potential outer planet and Venus missions and provided a baseline against carbon phenolic material. The results of these tests have given preliminary insight to sample configuration and physical recession profile characteristics

    Post-Flight Evaluation of PICA and PICA-X - Comparisons of the Stardust SRC and Space-X Dragon 1 Forebody Heatshield Materials

    Get PDF
    Phenolic Impregnated Carbon Ablator (PICA) was developed at NASA Ames Research Center. As a thermal protection material, PICA has the advantages of being able to withstand high heat fluxes with a relatively low density. This ablative material was used as the forebody heat shield material for the Stardust sample return capsule, which re-entered the Earths atmosphere in 2006. Based on PICA, SpaceX developed a variant, PICA-X, and used it as the heat shield material for its Dragon spacecraft, which successfully orbited the Earth and re-entered the atmosphere during the COTS Demo Flight 1 in 2010. Post-flight analysis was previously performed on the Stardust PICA heat shield material. Similarly, a near-stagnation core was obtained from the post-flight Dragon 1 heat shield, which was retrieved from the Pacific Ocean. Materials testing and analyses were performed on the core to evaluate its ablation performance and post-flight properties. Comparisons between PICA and PICA-X are made where applicable. Stardust and Dragon offer rare opportunities to evaluate materials post-flight - this data is beneficial in understanding material performance and also improves modeling capabilities

    AINFO - versão 5.0: manual on-line.

    Get PDF
    O AINFO é um sistema para automação de bibliotecas e recuperação de informação, desenvolvimento em padrão Windows, com arquitetura cliente/servidor baseada no sistema gerenciador de banco de dados relacional Firebird. Pemite o gerenciamento de informação técnico-científica, integrando bases de dados documentais, cadastrais e processos bibliográficos através do armazenamento, atualização, indexação e recuperação de informação de forma simples e rápida, utilizando não apenas recursos de um istema gerenciador de banco de dados, como controle de concorrência e manutenção de integridade das bases de dados, mas também oferecendo facilidades de recuperação de informação textual não disponíveis nesses sistemas.bitstream/CNPTIA/10207/1/doc40.pdfAcesso em: 29 maio 2008

    On the algebraic invariant curves of plane polynomial differential systems

    Full text link
    We consider a plane polynomial vector field P(x,y)dx+Q(x,y)dyP(x,y)dx+Q(x,y)dy of degree m>1m>1. To each algebraic invariant curve of such a field we associate a compact Riemann surface with the meromorphic differential ω=dx/P=dy/Q\omega=dx/P=dy/Q. The asymptotic estimate of the degree of an arbitrary algebraic invariant curve is found. In the smooth case this estimate was already found by D. Cerveau and A. Lins Neto [Ann. Inst. Fourier Grenoble 41, 883-903] in a different way.Comment: 10 pages, Latex, to appear in J.Phys.A:Math.Ge

    The light-cone gauge and the calculation of the two-loop splitting functions

    Get PDF
    We present calculations of next-to-leading order QCD splitting functions, employing the light-cone gauge method of Curci, Furmanski, and Petronzio (CFP). In contrast to the `principal-value' prescription used in the original CFP paper for dealing with the poles of the light-cone gauge gluon propagator, we adopt the Mandelstam-Leibbrandt prescription which is known to have a solid field-theoretical foundation. We find that indeed the calculation using this prescription is conceptionally clear and avoids the somewhat dubious manipulations of the spurious poles required when the principal-value method is applied. We reproduce the well-known results for the flavour non-singlet splitting function and the N_C^2 part of the gluon-to-gluon singlet splitting function, which are the most complicated ones, and which provide an exhaustive test of the ML prescription. We also discuss in some detail the x=1 endpoint contributions to the splitting functions.Comment: 41 Pages, LaTeX, 8 figures and tables as eps file

    Thermal Testing of the Heatshield for Extreme Entry Environment Technology (HEEET) TPS

    Get PDF
    The testing of a thermal protection system (TPS) in multiple arc jets and laser facilities is critical not only to determine the ability of a material to withstand the harsh aerothermal environments but is also required to collect relevant data that allows construction of a thermal response model of the TPS for flight design. The present talk provides an overview of recent arcjet testing of the HEEET material, one of the families of materials from the 3D Woven TPS program, being developed under NASAs Heatshield for Extreme Entry Environment Technology (HEEET) project

    Modeling mutant phenotypes and oscillatory dynamics in the Saccharomyces cerevisiae cAMP-PKA pathway

    Get PDF
    Background The cyclic AMP-Protein Kinase A (cAMP-PKA) pathway is an evolutionarily conserved signal transduction mechanism that regulates cellular growth and differentiation in animals and fungi. We present a mathematical model that recapitulates the short-term and long-term dynamics of this pathway in the budding yeast, Saccharomyces cerevisiae. Our model is aimed at recapitulating the dynamics of cAMP signaling for wild-type cells as well as single (pde1Δ and pde2Δ) and double (pde1Δpde2Δ) phosphodiesterase mutants. Results Our model focuses on PKA-mediated negative feedback on the activity of phosphodiesterases and the Ras branch of the cAMP-PKA pathway. We show that both of these types of negative feedback are required to reproduce the wild-type signaling behavior that occurs on both short and long time scales, as well as the the observed responses of phosphodiesterase mutants. A novel feature of our model is that, for a wide range of parameters, it predicts that intracellular cAMP concentrations should exhibit decaying oscillatory dynamics in their approach to steady state following glucose stimulation. Experimental measurements of cAMP levels in two genetic backgrounds of S. cerevisiae confirmed the presence of decaying cAMP oscillations as predicted by the model. Conclusions Our model of the cAMP-PKA pathway provides new insights into how yeast respond to alterations in their nutrient environment. Because the model has both predictive and explanatory power it will serve as a foundation for future mathematical and experimental studies of this important signaling network

    A Pseudo-logarithmic Image Processing Framework for Edge Detection

    Full text link
    Abstract. The paper presents a new [pseudo-] Logarithmic Model for Image Processing (LIP), which allows the computation of gray-level ad-dition, substraction and multiplication with scalars within a fixed gray-level range [0;D] without the use of clipping. The implementation of Laplacian edge detection techniques under the proposed model yields superior performance in biomedical applications as compared with the classical operations (performed either as real axis operations, either as classical LIP models).
    corecore