31 research outputs found

    Rhodolith Beds Are Major CaCO3 Bio-Factories in the Tropical South West Atlantic

    Get PDF
    Rhodoliths are nodules of non-geniculate coralline algae that occur in shallow waters (<150 m depth) subjected to episodic disturbance. Rhodolith beds stand with kelp beds, seagrass meadows, and coralline algal reefs as one of the world's four largest macrophyte-dominated benthic communities. Geographic distribution of rhodolith beds is discontinuous, with large concentrations off Japan, Australia and the Gulf of California, as well as in the Mediterranean, North Atlantic, eastern Caribbean and Brazil. Although there are major gaps in terms of seabed habitat mapping, the largest rhodolith beds are purported to occur off Brazil, where these communities are recorded across a wide latitudinal range (2°N - 27°S). To quantify their extent, we carried out an inter-reefal seabed habitat survey on the Abrolhos Shelf (16°50′ - 19°45′S) off eastern Brazil, and confirmed the most expansive and contiguous rhodolith bed in the world, covering about 20,900 km2. Distribution, extent, composition and structure of this bed were assessed with side scan sonar, remotely operated vehicles, and SCUBA. The mean rate of CaCO3 production was estimated from in situ growth assays at 1.07 kg m−2 yr−1, with a total production rate of 0.025 Gt yr−1, comparable to those of the world's largest biogenic CaCO3 deposits. These gigantic rhodolith beds, of areal extent equivalent to the Great Barrier Reef, Australia, are a critical, yet poorly understood component of the tropical South Atlantic Ocean. Based on the relatively high vulnerability of coralline algae to ocean acidification, these beds are likely to experience a profound restructuring in the coming decades

    Bryozoans are Major Modern Builders of South Atlantic Oddly Shaped Reefs

    Get PDF
    Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-27961-6.In major modern reef regions, either in the Indo-Pacific or the Caribbean, scleractinian corals are described as the main reef framework builders, often associated with crustose coralline algae. We used underwater cores to investigate Late Holocene reef growth and characterise the main framework builders in the Abrolhos Shelf, the largest and richest modern tropical reef complex in the South Western Atlantic, a scientifically underexplored reef province. Rather than a typical coralgal reef, our results show a complex framework building system dominated by bryozoans. Bryozoans were major components in all cores and age intervals (2,000 yrs BP), accounting for up to 44% of the reef framework, while crustose coralline algae and coral accounted for less than 28 and 23%, respectively. Reef accretion rates varied from 2.7 to 0.9 mm yr−1, which are similar to typical coralgal reefs. Bryozoan functional groups encompassed 20 taxa and Celleporaria atlantica (Busk, 1884) dominated the framework at all cores. While the prevalent mesotrophic conditions may have driven suspensionfeeders’ dominance over photoautotrophs and mixotrophs, we propose that a combination of historical factors with the low storm-disturbance regime of the tropical South Atlantic also contributed to the region’s low diversity, and underlies the unique mushroom shape of the Abrolhos pinnacles.We thank CNPq/FAPES-Sisbiota/PELD, CAPES/IODP, CAPES/Ciências do Mar, and ANP/Brasoil for long term project funding. We also thank ICMBio for research permits and field logistic support, and Conservation International for providing and authorizing the use of the IKONOS image. JMW and JCB are International Visiting Researcher at UFES and JBRJ, supported by the Science Without Borders program. Zá Cajueiro provided invaluable field support and Ronaldo Francini, Carlos Janovitch and Lucio Engler helped in the drilling operations. This is a contribution from the Rede Abrolhos (abrolhos.org)

    Trace Elements and Carbon and Nitrogen Stable Isotopes in Organisms from a Tropical Coastal Lagoon

    Get PDF
    Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (δ13C and δ15N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by 15N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between δ15N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption

    Structure of rhodolith beds from 4 to 55 meters deep along the southern coast of Espírito Santo State, Brazil

    No full text

    Complete mitochondrial genome of a rhodolith, Sporolithon durum

    No full text

    Heavy metals in benthic organisms from Todos os Santos Bay, Brazil

    No full text
    The marine ecosystems of Todos os Santos Bay (TSB, The State of Bahia, Brazil) have been impacted by the presence on its coast of a large metropolitan area as well as of chemical and petrochemical activities. Despite its ecological importance, there is a lack of scientific information concerning metal contamination in TSB marine biota. Thus, we analyzed concentrations of metals in four species of marine benthic organisms (two seaweeds, Padina gymnospora and Sargassum sp. one seagrass, Halodule wrightii and one oyster, Crassostrea rhizophorae) in three sites from the TSB region that have been most affected by industrial activities. The concentrations of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined by Atomic Absorption Spectrophometry. The obtained data indicates that cadmium and copper in seaweeds, oysters and seagrass, as well as Ni concentrations in oysters, were in range of contaminated coastal areas. Cadmium and copper are available to organisms through suspended particles, dissolved fraction of water column and bottom sediment interstitial water. As oysters and other mollusks are used as food sources by the local population, the metal levels found in oysters in TSB may constitute a health risk for this population. Our results suggest implanting a heavy metals biomonitoring program in the TSB marine ecosystems

    A habitat-based approach to predict impacts of marine protected areas on fishers

    Get PDF
    Although marine protected areas can simultaneously contribute to biodiversity conservation and fisheries management, the global network is biased toward particular ecosystem types because they have been established primarily in an ad hoc fashion. The optimization of trade‐offs between biodiversity benefits and socioeconomic values increases success of protected areas and minimizes enforcement costs in the long run, but it is often neglected in marine spatial planning (MSP). Although the acquisition of spatially explicit socioeconomic data is perceived as a costly or secondary step in MSP, it is critical to account for lost opportunities by people whose activities will be restricted, especially fishers. We developed an easily reproduced habitat‐based approach to estimate the spatial distribution of opportunity cost to fishers in data‐poor regions. We assumed the most accessible areas have higher economic and conservation values than less accessible areas and their designation as no‐take zones represents a loss of fishing opportunities. We estimated potential distribution of fishing resources from bathymetric ranges and benthic habitat distribution and the relative importance of the different resources for each port of total catches, revenues, and stakeholder perception. In our model, we combined different cost layers to produce a comprehensive cost layer so that we could evaluate of trade‐offs. Our approach directly supports conservation planning, can be applied generally, and is expected to facilitate stakeholder input and community acceptance of conservation
    corecore