15 research outputs found
Input of sugarcane post-harvest residues into the soil
Sugarcane (Saccharum spp.) crops provide carbon (C) for soil through straw and root system decomposition. Recently, however, sugarcane producers are considering straw to be removed for electricity or second generation ethanol production. To elucidate the role of straw and root system on the carbon supply into the soil, the biomass inputs from sugarcane straw (tops and dry leaves) and from root system (rhizomes and roots) were quantified, and its contribution to provide C to the soil was estimated. Three trials were carried out in the State of Sao Paulo, Brazil, from 2006 to 2009. All sites were cultivated with the variety SP81 3250 under the green sugarcane harvest. Yearly, post-harvest sugarcane residues (tops, dry leaves, roots and rhizomes) were sampled; weighted and dried for the dry mass (DM) production to be estimated. On average, DM root system production was 4.6 Mg ha-1 year-1 (1.5 Mg C ha-1 year-1) and 11.5 Mg ha-1 year-1 (5.1 Mg C ha-1 year-1) of straw. In plant cane, 35 % of the total sugarcane DM was allocated into the root system, declining to 20 % in the third ratoon. The estimate of potential allocation of sugarcane residues to soil organic C was 1.1 t ha-1 year-1; out of which 33 % was from root system and 67 % from straw. The participation of root system should be higher if soil layer is evaluated, a deeper soil layer, if root exudates are accounted and if the period of higher production of roots is considered
Contribution of nitrogen from sugarcane harvest residues and urea for crop nutrition
Sugarcane (Saccharum spp.) harvested without burning provides a substantial amount of remains (trash) on soil profiles which can be decomposed and release nutrients contributing to reduce fertilizer needs. The contribution of nitrogen (N) from sugarcane plant residues and fertilizer in sugarcane nutrition was assessed. Plant cane treatments were micro plots of 15N-labeled urea, sugarcane trash and root system; the last two to simulate the previous crop residues incorporated into the soil after crop renewal. For ratoons, N-ammonium nitrate (N-AN) micro plots, 150 kg ha-1 of N-AN and control (0 kg ha-1) were set up to evaluate the contribution of trash in N supply and quantify the effects of N-fertilizer on N-trash mineralization. The N balances derived from each 15N source were calculated after four crops and resulted in: 15N-urea applied at planting, 31 % was recovered by plant cane, 12 % by the following ratoons, 20 % remained in the soil and 37 % was not found in the soil-system (NOC). For crop residues 15N-trash + roots 26 % was recovered by sugarcane, 51 % remained in soil, and 23 % was NOC. N-fertilizer applied to ratoons nearly doubled the amount of N from green harvest residues recovered by sugarcane; 17 vs. 31 %. Water balances and crop evapotranspiration were correlated with 15N-sources recoveries and cumulative N recovery presented a positive correlation with evapotranspiration (2005 to 2009). The 15N balances indicated that crop residues are supplementary sources of N for sugarcane and may contribute to reduce N fertilizer needs since trash is annually added to the soil
Soil water dynamics and litter production in eucalypt and native vegetation in southeastern Brazil
High productivity of eucalypt plantations is the result of advances in research that have led to gradual improvements in intensive silvicultural technology. High productivity notwithstanding, eucalypt plantations remain the focus of environmental concerns. Our study aimed to compare the soil water regime, litter fall and nutrients dynamics either in a fragment of native forest or in an adjacent stand of growing eucalypt. We took field measurements during the first three years of eucalypt plantation in a sandy soil in the southeastern region of Brazil. Soil moisture and internal drainage were higher during the early stages of growth of the eucalypt stand, as compared with native vegetation. However, one and a half years after planting, available soil water was similar in both vegetations. Higher water availability under the eucalypt stand during the first year occurs because of silvicultural operations (soil preparation and weed control) and the small size of eucalypt trees; these factors increase water infiltration and decrease transpiration. Total leaf fall, over the study period, was similar for both ecosystems; however, differences were observed in the winter and early spring of 2010. The transfer of nutrients to soil by leaf fall was similar except for N and S, which was higher in native vegetation. Nitrogen concentration in the soil solution was higher in native vegetation, but K was higher under the eucalypt stand, mainly to a depth of up to 0.2 m
Leaching of nutrients from a sugarcane crop growing on an Ultisol in Brazil
Leaching is disadvantageous, both for economical and environmental reasons since it may decrease the ecosystem productivity and may also contribute to the contamination of surface and ground water. The objective of this paper was to quantify the loss of nitrogen and sulfur by leaching, at the depth of 0.9m, in an Ultisol in São Paulo State (Brazil) with high permeability, cultivated with sugarcane during the agricultural cycle of crop plant. The following ions were evaluated: nitrite, nitrate, ammonium, and sulfate. Calcium, magnesium, potassium, and phosphate were also evaluated at the same depth. The sugarcane was planted and fertilized in the furrows with 120kgha-1 of N-urea. In order to find out the fate of N-fertilizer, four microplots with 15N-enriched fertilizer were installed. Input and output of the considered ions at the depth of 0.9m were quantified from the flux density of water and the concentration of the elements in the soil solution at this soil depth: tensiometers, soil water retention curve and soil solution extractors were used for this quantification. The internal drainage was 205mm of water, with a total loss of 18kgha-1 of N and 10kgha-1 of S. The percentage of N in the soil solution derived from the fertilizer (%NSSDF) was 1.34, resulting in only 25gha-1 of N fertilizer loss by leaching during all agricultural cycle. Under the experimental conditions of this crop plant, that is, high demand of nutrients and high incorporation of crop residues, the leached N represented 15% of applied N and S leaching were not considerable; the higher amount of leached N was native nitrogen and a minor quantity from N fertilizer; and the leached amount of Ca, Mg, K and P did not exceed the applications performed in the crop by lime and fertilization.15N isotope Drainage Saccharum spp. Pollution Sustainable management