55,171 research outputs found
A New High Resolution CO Map of the inner 2.'5 of M51 I. Streaming Motions and Spiral Structure
[Abridged] The Owens Valley mm-Array has been used to map the CO 1--0
emission in the inner 2'.5 of the grand design spiral galaxy M51 at 2''-3''
resolution. The molecular spiral arms are revealed with unprecedented clarity:
supermassive cloud complexes, Giant Molecular Associations, are for the first
time resolved both along and perpendicular to the arms. Major complexes occur
symmetrically opposite each other in the two major arms. Streaming motions can
be studied in detail along the major and minor axes of M51. The streaming
velocities are very large, 60-150 km/s. For the first time, sufficient
resolution to resolve the structure in the molecular streaming motions is
obtained. Our data support the presence of galactic shocks in the arms of M51.
In general, velocity gradients across arms are higher by a factor of 2-10 than
previously found. They vary in steepness along the spiral arms, becoming
particularly steep in between GMAs. The steep gradients cause conditions of
strong reverse shear in several regions in the arms, and thus the notion that
shear is generally reduced by streaming motions in spiral arms will have to be
modified. Of the three GMAs studied on the SW arm, only one shows reduced
shear. We find an expansion in the NE molecular arm at 25'' radius SE of the
center. This broadening occurs right after the end of the NE arm at the Inner
Lindblad Resonance. Bifurcations in the molecular spiral arm structure, at a
radius of 73'', may be evidence of a secondary compression of the gas caused by
the 4/1 ultraharmonic resonance. Inside the radius of the ILR, we detect narrow
(~ 5'') molecular spiral arms possibly related to the K-band arms found in the
same region. We find evidence of non-circular motions in the inner 20'' which
are consistent with gas on elliptical orbits in a bar.Comment: 29 pages, 15 figures, uses latex macros for ApJ; accepted for
publication in Ap
Grid Loss: Detecting Occluded Faces
Detection of partially occluded objects is a challenging computer vision
problem. Standard Convolutional Neural Network (CNN) detectors fail if parts of
the detection window are occluded, since not every sub-part of the window is
discriminative on its own. To address this issue, we propose a novel loss layer
for CNNs, named grid loss, which minimizes the error rate on sub-blocks of a
convolution layer independently rather than over the whole feature map. This
results in parts being more discriminative on their own, enabling the detector
to recover if the detection window is partially occluded. By mapping our loss
layer back to a regular fully connected layer, no additional computational cost
is incurred at runtime compared to standard CNNs. We demonstrate our method for
face detection on several public face detection benchmarks and show that our
method outperforms regular CNNs, is suitable for realtime applications and
achieves state-of-the-art performance.Comment: accepted to ECCV 201
Vlasov scaling for the Glauber dynamics in continuum
We consider Vlasov-type scaling for the Glauber dynamics in continuum with a
positive integrable potential, and construct rescaled and limiting evolutions
of correlation functions. Convergence to the limiting evolution for the
positive density system in infinite volume is shown. Chaos preservation
property of this evolution gives a possibility to derive a non-linear
Vlasov-type equation for the particle density of the limiting system.Comment: 32 page
Spin order in the one-dimensional Kondo and Hund lattices
We study numerically the one-dimensional Kondo and Hund lattices consisting
of localized spins interacting antiferro or ferromagnetically with the
itinerant electrons, respectively. Using the Density Matrix Renormalization
Group we find, for both models and in the small coupling regime, the existence
of new magnetic phases where the local spins order forming ferromagnetic
islands coupled antiferromagnetically. Furthermore, by increasing the
interaction parameter we find that this order evolves toward the
ferromagnetic regime through a spiral-like phase with longer characteristic
wave lengths. These results shed new light on the zero temperature magnetic
phase diagram for these models.Comment: PRL, to appea
Simulating spin-3/2 particles at colliders
Support for interactions of spin-3/2 particles is implemented in the
FeynRules and ALOHA packages and tested with the MadGraph 5 and CalcHEP event
generators in the context of three phenomenological applications. In the first,
we implement a spin-3/2 Majorana gravitino field, as in local supersymmetric
models, and study gravitino and gluino pair-production. In the second, a
spin-3/2 Dirac top-quark excitation, inspired from compositness models, is
implemented. We then investigate both top-quark excitation and top-quark
pair-production. In the third, a general effective operator for a spin-3/2
Dirac quark excitation is implemented, followed by a calculation of the angular
distribution of the s-channel production mechanism.Comment: 20 pages, 7 figure
- …