2,978 research outputs found
Electronic structure calculations and molecular dynamics simulations with linear system-size scaling
We present a method for total energy minimizations and molecular dynamics
simulations based either on tight-binding or on Kohn-Sham hamiltonians. The
method leads to an algorithm whose computational cost scales linearly with the
system size. The key features of our approach are
(i) an orbital formulation with single particle wavefunctions constrained to
be localized in given regions of space, and (ii) an energy functional which
does not require either explicit orthogonalization of the electronic orbitals,
or inversion of an overlap matrix.
The foundations and accuracy of the approach and the performances of the
algorithm are discussed, and illustrated with several numerical examples
including Kohn-Sham hamiltonians. In particular we present calculations with
tight-binding hamiltonians for diamond, graphite, a carbon linear chain and
liquid carbon at low pressure. Even for a complex case such as liquid carbon --
a disordered metallic system with differently coordinated atoms -- the
agreement between standard diagonalization schemes and our approach is very
good. Our results establish the accuracy and reliability of the method for a
wide class of systems and show that tight binding molecular dynamics
simulations with a few thousand atoms are feasible on small workstations
La Linguistica Computazionale nell'analisi dei documenti tecnico-scientifici
L'elaborato sviluppato ha come scopo l'illustrazione dell'applicazione di tecniche e metodi di Linguistica Computazionale applicati all'analisi di testi tecnico-scientifici come brevetti o pubblicazioni.
L'utilizzo di techiche di analisi automatica dei testi permette di estrapolare informazioni dagli stessi in maniera efficace ed efficiente.
Sono stati applicati strumenti e metodologie di Linguistica Computazionale in vari casi applicativi, tra cui un'analisi del settore Biomedicale attraverso l'analisi di brevetti contenenti informazioni inerenti tale settore multidisciplinare
Post-T Tauri stars: a false problem
We consider the problem of the apparent lack of old T Tauri stars in low-mass
star forming regions in the framework of the standard model of low-mass star
formation. We argue that the similarity between molecular cloud lifetime and
ambipolar diffusion timescale implies that star formation does not take place
instantaneously, nor at a constant rate. We conclude that the probability of
finding a large population of old stars in a star forming region is
intrinsically very small and that the post-T Tauri problem is by and large not
existent.Comment: 6 pages (LaTeX), no Figures to be published in The Astrophysical
Journal Letter
Modeling the magnetic field in the protostellar source NGC 1333 IRAS 4A
Magnetic fields are believed to play a crucial role in the process of star
formation. We compare high-angular resolution observations of the submillimeter
polarized emission of NGC 1333 IRAS 4A, tracing the magnetic field around a
low-mass protostar, with models of the collapse of magnetized molecular cloud
cores. Assuming a uniform dust alignment efficiency, we computed the Stokes
parameters and synthetic polarization maps from the model density and magnetic
field distribution by integrations along the line-of-sight and convolution with
the interferometric response. The synthetic maps are in good agreement with the
data. The best-fitting models were obtained for a protostellar mass of 0.8
solar masses, of age 9e4 yr, formed in a cloud with an initial mass-to-flux
ratio ~2 times the critical value. The magnetic field morphology in NGC 1333
IRAS 4A is consistent with the standard theoretical scenario for the formation
of solar-type stars, where well-ordered, large-scale, rather than turbulent,
magnetic fields control the evolution and collapse of the molecular cloud cores
from which stars form.Comment: 4 pages, 5 figures. Accepted by Astronomy and Astrophysic
Non-thermal photons and H2 formation in the early Universe
The cosmological recombination of H and He at z \sim 1000 and the formation
of H2 during the dark ages produce a non-thermal photon excess in the Wien tail
of the cosmic microwave background (CMB) blackbody spectrum. Here we compute
the effect of these photons on the H- photodetachment and H2+ photodissociation
processes. We discuss the implications for the chemical evolution of the
Universe in the post-recombination epoch, emphasizing how important a detailed
account of the full vibrational manifold of H2 and H2+ in the chemical network
is. We find that the final abundances of H2, H2+, H3+ and HD are significantly
smaller than in previous calculations that neglected the effect of non-thermal
photons. The suppression is mainly caused by extra hydrogen recombination
photons and could affect the formation rate of first stars. We provide simple
analytical approximations for the relevant rate coefficients and briefly
discuss the additional effect of dark matter annihilation on the considered
reaction rates.Comment: 10 pages, 12 figures, 1 table; accepted for publication in MNRA
Massive black hole factories: Supermassive and quasi-star formation in primordial halos
Supermassive stars and quasi-stars (massive stars with a central black hole)
are both considered as potential progenitors for the formation of supermassive
black holes. They are expected to form from rapidly accreting protostars in
massive primordial halos. We explore how long rapidly accreting protostars
remain on the Hayashi track, implying large protostellar radii and weak
accretion luminosity feedback. We assess the potential role of energy
production in the nuclear core, and determine what regulates the evolution of
such protostars into quasi-stars or supermassive stars. We follow the
contraction of characteristic mass scales in rapidly accreting protostars, and
infer the timescales for them to reach nuclear densities. We compare the
characteristic timescales for nuclear burning with those for which the extended
protostellar envelope can be maintained. We find that the extended envelope can
be maintained up to protostellar masses of 3.6x10^8 \dot{m}^3 solar, where
\dot{m} denotes the accretion rate in solar masses per year. We expect the
nuclear core to exhaust its hydrogen content in 7x10^6 yrs. If accretion rates
\dot{m}>>0.14 can still be maintained at this point, a black hole may form
within the accreting envelope, leading to a quasi-star. Alternatively, the
accreting object will gravitationally contract to become a main-sequence
supermassive star. Due to the limited gas reservoir in dark matter halos with
10^7 solar masses, the accretion rate onto the central object may drop at late
times, implying the formation of supermassive stars as the typical outcome of
direct collapse. However, if high accretion rates are maintained, a quasi-star
with an interior black hole may form.Comment: 9 pages, 4 figures, submitted to A&A. Comments are welcom
- …