36 research outputs found

    Synchronized turbo apoptosis induced by cold-shock

    Get PDF
    In our research on the role of apoptosis in the pathogenesis of the autoimmune disease systemic lupus erythematosus (SLE), we aim to evaluate the effects of early and late apoptotic cells and blebs on antigen presenting cells. This requires the in vitro generation of sufficiently large and homogeneous populations of early and late apoptotic cells. Here, we present a quick method encountered by serendipity that results in highly reproducible synchronized homogeneous apoptotic cell populations. In brief, granulocytic 32Dcl3 cells are incubated on ice for 2Β h and subsequently rewarmed at 37Β°C. After 30–90Β min at 37Β°C more than 80–90% of the cells become early apoptotic (Annexin V positive/propidium iodide negative). After 24Β h of rewarming at 37Β°C 98% of the cells were late apoptotic (secondary necrotic; Annexin V positive/propidium iodide positive). Cells already formed apoptotic blebs at their cell surface after approximately 20Β min at 37Β°C. Inter-nucleosomal chromatin cleavage and caspase activation were other characteristics of this cold-shock-induced process of apoptosis. Consequently, apoptosis could be inhibited by a caspase inhibitor. Finally, SLE-derived anti-chromatin autoantibodies showed a high affinity for apoptotic blebs generated by cold-shock. Overall, cold-shock induced apoptosis is achieved without the addition of toxic compounds or antibodies, and quickly leads to synchronized homogeneous apoptotic cell populations, which can be applied for various research questions addressing apoptosis

    Impaired RNA incorporation and dimerization in live attenuated leader-variants of SIV(mac239)

    Get PDF
    BACKGROUND: The 5' untranslated region (UTR) or leader sequence of simian immunodeficiency virus (SIV(mac239)) is multifunctional and harbors the regulatory elements for viral replication, persistence, gene translation, expression, and the packaging and dimerization of viral genomic RNA (vRNA). We have constructed a series of deletions in the SIV(mac239 )leader sequence in order to determine the involvement of this region in both the packaging and dimerization of viral genomic RNA. We also assessed the impact of these deletions upon viral infectiousness, replication kinetics and gene expression in cell lines and monkey peripheral blood mononuclear cells (PBMC). RESULTS: Regions on both sides of the major splice donor (SD) were found to be necessary for the efficiency and specificity of viral genome packaging. However, stem-loop1 is critical for both RNA encapsidation and dimerization. Downstream elements between the splice donor and the initiation site of SIV-Gag have additive effects on RNA packaging and contribute to a lesser degree to RNA dimerization. The targeted disruption of structures on both sides of the SD also severely impacts viral infectiousness, gene expression and replication in both CEMx174 cells and rhesus PBMC. CONCLUSION: In the leader region of SIV(mac239), stem-loop1 functions as the primary determinant for both RNA encapsidation and dimerization. Downstream elements between the splice donor and the translational initiation site of SIV-Gag are classified as secondary determinants and play a role in dimerization. Collectively, these data signify a linkage between the primary encapsidation determinant of SIV(mac239 )and RNA dimerization

    Induction of IgG3 to LPS via Toll-Like Receptor 4 Co-Stimulation

    Get PDF
    B-cells integrate antigen-specific signals transduced via the B-cell receptor (BCR) and antigen non-specific co-stimulatory signals provided by cytokines and CD40 ligation in order to produce IgG antibodies. Toll-like receptors (TLRs) also provide co-stimulation, but the requirement for TLRs to generate T-cell independent and T-cell dependent antigen specific antibody responses is debated. Little is known about the role of B-cell expressed TLRs in inducing antigen-specific antibodies to antigens that also activate TLR signaling. We found that mice lacking functional TLR4 or its adaptor molecule MyD88 harbored significantly less IgG3 natural antibodies to LPS, and required higher amounts of LPS to induce anti-LPS IgG3. In vitro, BCR and TLR4 signaling synergized, lowering the threshold for production of T-cell independent IgG3 and IL-10. Moreover, BCR and TLR4 directly associate through the transmembrane domain of TLR4. Thus, in vivo, BCR/TLR synergism could facilitate the induction of IgG3 antibodies against microbial antigens that engage both innate and adaptive B-cell receptors. Vaccines might exploit BCR/TLR synergism to rapidly induce antigen-specific antibodies before significant T-cell responses arise

    An African green monkey lacking peripheral CD4 lymphocytes that retains helper T cell activity and coexists with SIVagm

    No full text
    Natural infection with simian immunodeficiency virus (SIV) is known to occur in the African green monkey (AGM). The actual onset of the disease has not been recognized in SIVagm infected AGM, and the precise reason for such apathogenicity in the AGM remains unclear. We reported previously that AGM peripheral CD4 lymphocytes underwent a peculiar differentiation from CD4+ to CD4βˆ’ cells after in vitro activation, and we inferred that the AGM does not fall into a fatal immunodeficient state because of the generation of CD4βˆ’ helper T cells in vivo. To evaluate this possibility, we examined the relationship between CD4 expression and helper T cell activity in the naturally infected AGM. We identified a healthy monkey almost lacking CD4 T cells in the periphery. This AGM showed no signs and symptoms of immunodeficiency and retained a helper T cell activity in antibody production comparable to those of CD4+ AGMs. In addition, SIVagm could be isolated from CD8+ lymphocytes in the CD4βˆ’ AGM. These observations suggest that a unique host-virus adaptation has developed in the AGM, and may be helpful in explaining the fundamental reason for the apathogenicity occurring in this monkey

    Analysis of Multiply Spliced Transcripts in Lymphoid Tissue Reservoirs of Rhesus Macaques Infected with RT-SHIV during HAART

    Get PDF
    Highly active antiretroviral therapy (HAART) can reduce levels of human immunodeficiency virus type 1 (HIV-1) to undetectable levels in infected individuals, but the virus is not eradicated. The mechanisms of viral persistence during HAART are poorly defined, but some reservoirs have been identified, such as latently infected resting memory CD4(+) T cells. During latency, in addition to blocks at the initiation and elongation steps of viral transcription, there is a block in the export of viral RNA (vRNA), leading to the accumulation of multiply-spliced transcripts in the nucleus. Two of the genes encoded by the multiply-spliced transcripts are Tat and Rev, which are essential early in the viral replication cycle and might indicate the state of infection in a given population of cells. Here, the levels of multiply-spliced transcripts were compared to the levels of gag-containing RNA in tissue samples from RT-SHIV-infected rhesus macaques treated with HAART. Splice site sequence variation was identified during development of a TaqMan PCR assay. Multiply-spliced transcripts were detected in gastrointestinal and lymphatic tissues, but not the thymus. Levels of multiply-spliced transcripts were lower than levels of gag RNA, and both correlated with plasma virus loads. The ratio of multiply-spliced to gag RNA was greatest in the gastrointestinal samples from macaques with plasma virus loads <50 vRNA copies per mL at necropsy. Levels of gag RNA and multiply-spliced mRNA in tissues from RT-SHIV-infected macaques correlate with plasma virus load
    corecore