15,896 research outputs found
Extracting joint weak values with local, single-particle measurements
Weak measurement is a new technique which allows one to describe the
evolution of postselected quantum systems. It appears to be useful for
resolving a variety of thorny quantum paradoxes, particularly when used to
study properties of pairs of particles. Unfortunately, such nonlocal or joint
observables often prove difficult to measure weakly in practice (for instance,
in optics -- a common testing ground for this technique -- strong photon-photon
interactions would be needed). Here we derive a general, experimentally
feasible, method for extracting these values from correlations between
single-particle observables.Comment: 6 page
Quantum Nonlocality in Two-Photon Experiments at Berkeley
We review some of our experiments performed over the past few years on
two-photon interference. These include a test of Bell's inequalities, a study
of the complementarity principle, an application of EPR correlations for
dispersion-free time-measurements, and an experiment to demonstrate the
superluminal nature of the tunneling process. The nonlocal character of the
quantum world is brought out clearly by these experiments. As we explain,
however, quantum nonlocality is not inconsistent with Einstein causality.Comment: 16 pages including 24 figure
Does abortion reduce self-esteem and life satisfaction?
PurposeThis study aims to assess the effects of obtaining an abortion versus being denied an abortion on self-esteem and life satisfaction.MethodsWe present the first 2.5 years of a 5-year longitudinal telephone-interview study that follows 956 women who sought an abortion from 30 facilities across the USA. We examine the self-esteem and life satisfaction trajectories of women who sought and received abortions just under the facility's gestational age limit, of women who sought and received abortions in their first trimester of pregnancy, and of women who sought abortions just beyond the facility gestational limit and were denied an abortion. We use adjusted mixed effects linear regression analyses to assess whether the trajectories of women who sought and obtained an abortion differ from those who were denied one.ResultsWomen denied an abortion initially reported lower self-esteem and life satisfaction than women who sought and obtained an abortion. For all study groups, except those who obtained first trimester abortions, self-esteem and life satisfaction improved over time. The initially lower levels of self-esteem and life satisfaction among women denied an abortion improved more rapidly reaching similar levels as those obtaining abortions at 6 months to one year after abortion seeking. For women obtaining first trimester abortions, initially higher levels of life satisfaction remained steady over time.ConclusionsThere is no evidence that abortion harms women's self-esteem or life satisfaction in the short term
Superoscillations and tunneling times
It is proposed that superoscillations play an important role in the
interferences which give rise to superluminal effects. To exemplify that, we
consider a toy model which allows for a wave packet to travel, in zero time and
negligible distortion a distance arbitrarily larger than the width of the wave
packet. The peak is shown to result from a superoscillatory superposition at
the tail. Similar reasoning applies to the dwell time.Comment: 12 page
Spatial organization of organelles in fungi: Insights from mathematical modelling
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Mathematical modelling in cellular systems aims to describe biological processes in a quantitative manner. Most accurate modelling is based on robust experimental data. Here we review recent progress in the theoretical description of motor behaviour, early endosome motility, ribosome distribution and peroxisome transport in the fungal model system Ustilago maydis and illustrate the power of modelling in our quest to understand molecular details and cellular roles of membrane trafficking in filamentous fungi.Work on mathematical models in U. maydis was supported by the Biotechnology and Biosciences Research Council (BB/J009903/1 to G.S.)
Comment on "A linear optics implementation of weak values in Hardy's paradox"
A recent experimental proposal by Ahnert and Payne [S.E. Ahnert and M.C.
Payne, Phys. Rev. A 70, 042102 (2004)] outlines a method to measure the weak
value predictions of Aharonov in Hardy's paradox. This proposal contains flaws
such as the state preparation method and the procedure for carrying out the
requisite weak measurements. We identify previously published solutions to some
of the flaws.Comment: To be published in Physical Review
Quasi-Particle Degrees of Freedom versus the Perfect Fluid as Descriptors of the Quark-Gluon Plasma
The hot nuclear matter created at the Relativistic Heavy Ion Collider (RHIC)
has been characterized by near-perfect fluid behavior. We demonstrate that this
stands in contradiction to the identification of QCD quasi-particles with the
thermodynamic degrees of freedom in the early (fluid) stage of heavy ion
collisions. The empirical observation of constituent quark ``'' scaling of
elliptic flow is juxtaposed with the lack of such scaling behavior in
hydrodynamic fluid calculations followed by Cooper-Frye freeze-out to hadrons.
A ``quasi-particle transport'' time stage after viscous effects break down the
hydrodynamic fluid stage, but prior to hadronization, is proposed to reconcile
these apparent contradictions. However, without a detailed understanding of the
transitions between these stages, the ``'' scaling is not a necessary
consequence of this prescription. Also, if the duration of this stage is too
short, it may not support well defined quasi-particles. By comparing and
contrasting the coalescence of quarks into hadrons with the similar process of
producing light nuclei from nucleons, it is shown that the observation of
``'' scaling in the final state does not necessarily imply that the
constituent degrees of freedom were the relevant ones in the initial state.Comment: 9 pages, 7 figures, Updated text and figure
Elastic turbulence in curvilinear flows of polymer solutions
Following our first report (A. Groisman and V. Steinberg, \sl Nature , 53 (2000)) we present an extended account of experimental observations of
elasticity induced turbulence in three different systems: a swirling flow
between two plates, a Couette-Taylor (CT) flow between two cylinders, and a
flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of
width of the region available for flow to radius of curvature of the
streamlines. The experiments were carried out with dilute solutions of high
molecular weight polyacrylamide in concentrated sugar syrups. High polymer
relaxation time and solution viscosity ensured prevalence of non-linear elastic
effects over inertial non-linearity, and development of purely elastic
instabilities at low Reynolds number (Re) in all three flows. Above the elastic
instability threshold, flows in all three systems exhibit features of developed
turbulence. Those include: (i)randomly fluctuating fluid motion excited in a
broad range of spatial and temporal scales; (ii) significant increase in the
rates of momentum and mass transfer (compared to those expected for a steady
flow with a smooth velocity profile). Phenomenology, driving mechanisms, and
parameter dependence of the elastic turbulence are compared with those of the
conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure
Rank 3 permutation characters and maximal subgroups
In this paper we classify all maximal subgroups M of a nearly simple
primitive rank 3 group G of type L=Omega_{2m+1}(3), m > 3; acting on an L-orbit
E of non-singular points of the natural module for L such that 1_P^G <=1_M^G
where P is a stabilizer of a point in E. This result has an application to the
study of minimal genera of algebraic curves which admit group actions.Comment: 41 pages, to appear in Forum Mathematicu
Conditional probabilities in quantum theory, and the tunneling time controversy
It is argued that there is a sensible way to define conditional probabilities
in quantum mechanics, assuming only Bayes's theorem and standard quantum
theory. These probabilities are equivalent to the ``weak measurement''
predictions due to Aharonov {\it et al.}, and hence describe the outcomes of
real measurements made on subensembles. In particular, this approach is used to
address the question of the history of a particle which has tunnelled across a
barrier. A {\it gedankenexperiment} is presented to demonstrate the physically
testable implications of the results of these calculations, along with graphs
of the time-evolution of the conditional probability distribution for a
tunneling particle and for one undergoing allowed transmission. Numerical
results are also presented for the effects of loss in a bandgap medium on
transmission and on reflection, as a function of the position of the lossy
region; such loss should provide a feasible, though indirect, test of the
present conclusions. It is argued that the effects of loss on the pulse {\it
delay time} are related to the imaginary value of the momentum of a tunneling
particle, and it is suggested that this might help explain a small discrepancy
in an earlier experiment.Comment: 11 pages, latex, 4 postscript figures separate (one w/ 3 parts
- …