72 research outputs found

    Glutathione infusion before primary percutaneous coronary intervention: A randomised controlled pilot study

    Get PDF
    Objective: In the setting of reperfused ST-elevation myocardial infarction (STEMI), increased production of reactive oxygen species (ROS) contributes to reperfusion injury. Among ROS, hydrogen peroxide (H2O2) showed toxic effects on human cardiomyocytes and may induce microcirculatory impairment. Glutathione (GSH) is a water-soluble tripeptide with a potent oxidant scavenging activity. We hypothesised that the infusion of GSH before acute reoxygenation might counteract the deleterious effects of increased H2O2 generation on myocardium. Methods: Fifty consecutive patients with STEMI, scheduled to undergo primary angioplasty, were randomly assigned, before intervention, to receive an infusion of GSH (2500 mg/25 mL over 10 min), followed by drug administration at the same doses at 24, 48 and 72 hours elapsing time or placebo. Peripheral blood samples were obtained before and at the end of the procedure, as well as after 5 days. H2O2 production, 8-iso-prostaglandin F2α (PGF2α) formation, H2O2 breakdown activity (HBA) and nitric oxide (NO) bioavailability were determined. Serum cardiactroponin T (cTpT) was measured at admission and up to 5 days. Results: Following acute reperfusion, a significant reduction of H2O2 production (p=0.0015) and 8-iso-PGF2α levels (p=0.0003), as well as a significant increase in HBA (p<0.0001)and NO bioavailability (p=0.035), was found in the GSH group as compared with placebo. In treated patients, attenuated production of H2O2 persisted up to 5 days from the index procedure (p=0.009) and these changes was linked to those of the cTpT levels (r=0.41, p=0.023). Conclusion: The prophylactic and prolonged infusion of GSH seems to determine a rapid onset and persistent blunting of H2O2 generation improving myocardial cell survival. Nevertheless, a larger trial, adequately powered for evaluation of clinical endpoints, is ongoing to confirm the current finding

    Salicylaldoximes and anthranylaldoximes as alternatives to phenol-based estrogen receptor ligands

    Get PDF
    Estrogens play a crucial role in the development and function of female reproductive tissues. They have positive effects on the maintenance of bone mineral density, on the liver, and on the cardiovascular and central nervous systems. Selective Estrogen Receptor Modulators (SERMs) are particularly attractive as therapeutic agents because they are able to block estrogen action at those sites where stimulation would be undesirable, such as the breast and uterus, but at the same time stimulate estrogen actions in other tissues where they are desired, such as the bone and liver. Most synthetic estrogen receptor ligands possess a phenolic ring, mimicking the phenolic "Aring" of the natural ligand estradiol. In an attempt to increase the structural diversity of estrogen receptor (ER) ligands, we designed and synthesized molecules containing unprecedented replacements of the prototypical phenolic "A-ring" of estrogens with an oxime and a hydroxy- (salicylaldoximes) or aminomoieties (anthranylaldoximes), forming intramolecularly H-bonded pseudocycles. These new classes of compounds showed interesting ER binding properties on both receptor subtypes (ERα and ERβ). These results proved that the six-membered ring formed by an intramolecular hydrogen bond, and containing an exocyclic oxime OH, is an effective stereoelectronic replacement of the phenolic ring of typical ER ligands

    Increased Expression of PS1 Is Sufficient to Elevate the Level and Activity of γ-Secretase In Vivo

    Get PDF
    Increase in the generation and deposition of amyloid-β (Aβ) plays a central role in the development of Alzheimer's Disease (AD). Elevation of the activity of γ-secretase, a key enzyme required for the generation for Aβ, can thus be a potential risk factor in AD. However, it is not known whether γ-secretase can be upregulated in vivo. While in vitro studies showed that expression of all four components of γ-secretase (Nicastrin, Presenilin, Pen-2 and Aph-1) are required for upregulation of γ-secretase, it remains to be established as to whether this is true in vivo. To investigate whether overexpressing a single component of the γ-secretase complex is sufficient to elevate its level and activity in the brain, we analyzed transgenic mice expressing either wild type or familial AD (fAD) associated mutant PS1. In contrast to cell culture studies, overexpression of either wild type or mutant PS1 is sufficient to increase levels of Nicastrin and Pen-2, and elevate the level of active γ-secretase complex, enzymatic activity of γ-secretase and the deposition of Aβ in brains of mice. Importantly, γ-secretase comprised of mutant PS1 is less active than that of wild type PS1-containing γ-secretase; however, γ-secretase comprised of mutant PS1 cleaves at the Aβ42 site of APP-CTFs more efficiently than at the Aβ40 site, resulting in greater accumulation of Aβ deposits in the brain. Our data suggest that whereas fAD-linked PS1 mutants cause early onset disease, upregulation of PS1/γ-secretase activity may be a risk factor for late onset sporadic AD

    Food Catches the Eye but Not for Everyone: A BMI–Contingent Attentional Bias in Rapid Detection of Nutriments

    Get PDF
    An organism's survival depends crucially on its ability to detect and acquire nutriment. Attention circuits interact with cognitive and motivational systems to facilitate detection of salient sensory events in the environment. Here we show that the human attentional system is tuned to detect food targets among nonfood items. In two visual search experiments participants searched for discrepant food targets embedded in an array of nonfood distracters or vice versa. Detection times were faster when targets were food rather than nonfood items, and the detection advantage for food items showed a significant negative correlation with Body Mass Index (BMI). Also, eye tracking during searching within arrays of visually homogenous food and nonfood targets demonstrated that the BMI-contingent attentional bias was due to rapid capturing of the eyes by food items in individuals with low BMI. However, BMI was not associated with decision times after the discrepant food item was fixated. The results suggest that visual attention is biased towards foods, and that individual differences in energy consumption - as indexed by BMI - are associated with differential attentional effects related to foods. We speculate that such differences may constitute an important risk factor for gaining weight

    Presenilin 2 Is the Predominant γ-Secretase in Microglia and Modulates Cytokine Release

    Get PDF
    Presenilin 1 (PS1) and Presenilin 2 (PS2) are the enzymatic component of the γ-secretase complex that cleaves amyloid precursor protein (APP) to release amyloid beta (Aβ) peptide. PS deficiency in mice results in neuroinflammation and neurodegeneration in the absence of accumulated Aβ. We hypothesize that PS influences neuroinflammation through its γ-secretase action in CNS innate immune cells. We exposed primary murine microglia to a pharmacological γ-secretase inhibitor which resulted in exaggerated release of TNFα and IL-6 in response to lipopolysaccharide. To determine if this response was mediated by PS1, PS2 or both we used shRNA to knockdown each PS in a murine microglia cell line. Knockdown of PS1 did not lead to decreased γ-secretase activity while PS2 knockdown caused markedly decreased γ-secretase activity. Augmented proinflammatory cytokine release was observed after knockdown of PS2 but not PS1. Proinflammatory stimuli increased microglial PS2 gene transcription and protein in vitro. This is the first demonstration that PS2 regulates CNS innate immunity. Taken together, our findings suggest that PS2 is the predominant γ-secretase in microglia and modulates release of proinflammatory cytokines. We propose PS2 may participate in a negative feedback loop regulating inflammatory behavior in microglia

    The structure and function of Alzheimer's gamma secretase enzyme complex

    Get PDF
    The production and accumulation of the beta amyloid protein (Aβ) is a key event in the cascade of oxidative and inflammatory processes that characterizes Alzheimer’s disease (AD). A multi-subunit enzyme complex, referred to as gamma (γ) secretase, plays a pivotal role in the generation of Aβ from its parent molecule, the amyloid precursor protein (APP). Four core components (presenilin, nicastrin, aph-1, and pen-2) interact in a high-molecular-weight complex to perform intramembrane proteolysis on a number of membrane-bound proteins, including APP and Notch. Inhibitors and modulators of this enzyme have been assessed for their therapeutic benefit in AD. However, although these agents reduce Aβ levels, the majority have been shown to have severe side effects in pre-clinical animal studies, most likely due to the enzymes role in processing other proteins involved in normal cellular function. Current research is directed at understanding this enzyme and, in particular, at elucidating the roles that each of the core proteins plays in its function. In addition, a number of interacting proteins that are not components of γ-secretase also appear to play important roles in modulating enzyme activity. This review will discuss the structural and functional complexity of the γ-secretase enzyme and the effects of inhibiting its activity

    Capillaroscopic aspects in patients with renovascular hypertension (Quadri capillaroscopici in pazienti affetti da ipertensione nefrovascolare)

    No full text
    Capillaroscopic aspects in patients with renovascular hypertension (Quadri capillaroscopici in pazienti affetti da ipertensione nefrovascolare

    Differentiation of pathologic forms of cardiac hypertrophy from athlete heart by 2D-strain-Doppler echocardiography

    No full text
    Purpose: Assessment of the underlying etiology of left ventricular hypertrophy (LVH) is a challenging clinical problem. In this study we sought to determine whether tissue Doppler imaging (TDI) and speckle tracking imaging (STI) could distinguish between subjects with pathological LVH, such as occurs in hypertensive heart disease, hypertrophic cardiomyopathy (HCM), or aortic stenosis, and those with athletic LVH. Methods: A total of 113 participants were studied, comprising competitive athletes (25), hypertensive heart disease (25), HCM (12), aortic stenosis (21), and healthy volunteers (30). Left ventricular mass index, ejection fraction, end-diastolic, end-systolic and stroke volume index, diastolic wall thickness, wall thickness ratio and diastolic and systolic wall-to-volume ratios were determined. Peak systolic longitudinal strain (e), peak systolic strain rate (SR-S), peak early diastolic strain rate (SR-E), and peak late diastolic strain rate (SR-A) values were measured by TDI in the basal, mid and apical segments in apical 4-chamber view. Averaged LV rotation and rotational velocities from the base and apex were obtained by STI and used for calculation of LV torsion (LVtor). The analysis of strain Doppler parameters and rotation was performed offline using customized computer software (EchoPac, Version 7.0, General Electric). All of the calculations were averaged for at least 3 consecutive beats. Results: Left ventricular (LV) mass indices were similar for all forms of LVH (p..05), which were higher than those obtained in healthy volunteers (p,.05). Athletes had no significant differences in e and SR-E compared with control subjects (p ¼ .16 and .82, respectively). Patients with pathologic LVH had significantly decreased e and SR-E (average septum: 216.8 + 3.2%, and 1.66 + 0.37 s-1, respectively) comparedwith control subjects (221.9 + 3.5%, and 2.44 + 0.45 s-1, respectively; all p,.0005). LVtor increased significantly in pathologic LVH and in athletes compared to normals (p,.005 and .0001, respectively). In pathologic LVH LVtor increased mainly as a result of reduced basal rotation (23.8+1.3 vs 26.1+1.6 degrees, p¼.04). In athletes the LVtor increase was the result of an increase in both basal and apical rotation (basal rotation, 26.1+1.6 vs 28.9+1.8 degrees, p¼.03; apical rotation, 17.2+3.2 vs 25.9+4.6 degrees, p¼.07). Conclusions: Pathologic LVH has significant longitudinal strain and SR-E reduction versus controls and a different pattern of LV torsion compared to athletes. These findings suggest that TDI and STI may have a clinical impact in the assessment of physiologic LVH state
    corecore