243 research outputs found

    Performance Analysis of a Novel Air-based Cavity Receiver

    Get PDF
    AbstractIn this paper a new design of a novel CSP cavity receiver for parabolic trough collector is analyzed by means of an analytical Matlab model. The receiver, designed by the Swiss company Airlight Energy Manufacturing SA, is 212 m long consisting essentially of a feed pipe, a run-back pipe and 4608 helically coiled heat exchangers designed to capture the incident solar energy concentrated by a parabolic trough. The heat transfer fluid is air heated to temperatures above 600°C.The analytical Matlab model based on a pneumatic - electric circuit analogy was developed to assess the receiver performance in terms of mass flow rate distribution, pressure drop, air outlet temperature and thermal efficiency. A solution was proposed to approximately ensure the same mass flow rate for each cavity.Different skew angles for the incoming solar radiation were considered and the receiver geometry was optimized minimizing the pressure drop and the thermal losses through the runback pipe. The main requirement was to achieve, at the outlet section of the receiver, an air temperature of 650°C; therefore, the total inlet mass flow rate was tuned accordingly.The helically coiled heat exchanger and the receiver insulation sub-models were validated against accurate computational fluid dynamics simulations

    Characterization of Antioxidant Potential of Seaweed Extracts for Enrichment of Convenience Food

    Get PDF
    In recent years, there has been a growing interest in natural antioxidants as replacements of synthetic compounds because of increased safety concerns and worldwide trend toward the usage of natural additives in foods. One of the richest sources of natural antioxidants, nowadays largely studied for their potential to decrease the risk of diseases and to improve oxidative stability of food products, are edible brown seaweeds. Nevertheless, their antioxidant mechanisms are slightly evaluated and discussed. The aims of this study were to suggest possible mechanism(s) of Fucus vesiculosus antioxidant action and to assess its bioactivity during the production of enriched rye snacks. Chemical and cell-based assays indicate that the efficient preventive antioxidant action of Fucus vesiculosus extracts is likely due to not only the high polyphenol content, but also their good Fe2+-chelating ability. Moreover, the data collected during the production of Fucus vesiculosus-enriched rye snacks show that this seaweed can increase, in appreciable measure, the antioxidant potential of enriched convenience cereals. This information can be used to design functional foods enriched in natural antioxidant ingredients in order to improve the health of targeted consumers

    Space flight effects on antioxidant molecules in dry tardigrades : the TARDIKISS experiment

    Get PDF
    The TARDIKISS (Tardigrades in Space) experiment was part of the Biokon in Space (BIOKIS) payload, a set of multidisciplinary experiments performed during the DAMA (Dark Matter) mission organized by Italian Space Agency and Italian Air Force in 2011. This mission supported the execution of experiments in short duration (16 days) taking the advantage of the microgravity environment on board of the Space Shuttle Endeavour (its last mission STS-134) docked to the International Space Station. TARDIKISS was composed of three sample sets: one flight sample and two ground control samples. These samples provided the biological material used to test as space stressors, including microgravity, affected animal survivability, life cycle, DNA integrity, and pathways of molecules working as antioxidants. In this paper we compared the molecular pathways of some antioxidant molecules, thiobarbituric acid reactive substances, and fatty acid composition between flight and control samples in two tardigrade species, namely, Paramacrobiotus richtersi and Ramazzottius oberhaeuseri. In both species, the activities of ROS scavenging enzymes, the total content of glutathione, and the fatty acids composition between flight and control samples showed few significant differences. TARDIKISS experiment, together with a previous space experiment (TARSE), further confirms that both desiccated and hydrated tardigrades represent useful animal tool for space research

    Fatty Acid Profile and Antioxidant Status Fingerprint in Sarcopenic Elderly Patients : Role of Diet and Exercise

    Get PDF
    Plasma fatty acids (FAs) and oxidant status contribute to the etiology of sarcopenia in the elderly concurring to age-related muscle loss and elderly frailty through several mechanisms including changes in FA composition within the sarcolemma, promotion of chronic low-grade inflammation, and insulin resistance. The aim of this study was to determine the FA profile and pro-antioxidant status in sarcopenic frail elderly patients enrolled in a nutritional and physical activity program and to evaluate their correlation with clinical markers. Moreover, the possible changes, produced after a short-term clinical protocol, were evaluated. Plasma and erythrocyte FA composition and pro-antioxidant status were analyzed in sarcopenic elderly subjects recruited for the randomized clinical study and treated with a placebo or dietary supplement, a personalized diet, and standardized physical activity. Subjects were tested before and after 30 days of treatment. Pearson correlations between biochemical parameters and patients' characteristics at recruitment indicate interesting features of sarcopenic status such as negative correlation among the plasma FA profile, age, and physical characteristics. Physical activity and dietetic program alone for 30 days induced a decrease of saturated FA concentration with a significant increase of dihomo-gamma-linolenic acid. Supplementation plus physical activity induced a significant decrease of linoleic acid, omega-6 polyunsaturated FAs, and an increase of stearic and oleic acid concentration. Moreover, glutathione reductase activity, which is an indicator of antioxidant status, significantly increased in erythrocytes. Changes over time between groups indicate significant differences for saturated FAs, which suggest that the amino acid supplementation restores FA levels that are consumed during physical activity. A relationship between FA and clinical/metabolic status revealed unique correlations and a specific metabolic and lipidomic fingerprint in sarcopenic elderly. The results indicate the positive beneficial role of supplementation and physical activity on plasma FA status and the antioxidant system as a co-adjuvant approach in sarcopenic, frail, elderly patients

    Fatty acid profile and antioxidant status fingerprint in sarcopenic elderly patients: Role of diet and exercise

    Get PDF
    Plasma fatty acids (FAs) and oxidant status contribute to the etiology of sarcopenia in the elderly concurring to age-related muscle loss and elderly frailty through several mechanisms including changes in FA composition within the sarcolemma, promotion of chronic low-grade inflammation, and insulin resistance. The aim of this study was to determine the FA profile and pro-antioxidant status in sarcopenic frail elderly patients enrolled in a nutritional and physical activity program and to evaluate their correlation with clinical markers. Moreover, the possible changes, produced after a short-term clinical protocol, were evaluated. Plasma and erythrocyte FA composition and pro-antioxidant status were analyzed in sarcopenic elderly subjects recruited for the randomized clinical study and treated with a placebo or dietary supplement, a personalized diet, and standardized physical activity. Subjects were tested before and after 30 days of treatment. Pearson correlations between biochemical parameters and patients’ characteristics at recruitment indicate interesting features of sarcopenic status such as negative correlation among the plasma FA profile, age, and physical characteristics. Physical activity and dietetic program alone for 30 days induced a decrease of saturated FA concentration with a significant increase of dihomo-gamma-linolenic acid. Supplementation plus physical activity induced a significant decrease of linoleic acid, omega-6 polyunsaturated FAs, and an increase of stearic and oleic acid concentration. Moreover, glutathione reductase activity, which is an indicator of antioxidant status, significantly increased in erythrocytes. Changes over time between groups indicate significant differences for saturated FAs, which suggest that the amino acid supplementation restores FA levels that are consumed during physical activity. A relationship between FA and clinical/metabolic status revealed unique correlations and a specific metabolic and lipidomic fingerprint in sarcopenic elderly. The results indicate the positive beneficial role of supplementation and physical activity on plasma FA status and the antioxidant system as a co-adjuvant approach in sarcopenic, frail, elderly patients

    Vitamin D and ω-3 Supplementations in Mediterranean Diet During the 1st Year of Overt Type 1 Diabetes: A Cohort Study

    Get PDF
    Vitamin D and omega 3 fatty acid (\u3c9-3) co-supplementation potentially improves type 1 diabetes (T1D) by attenuating autoimmunity and counteracting inflammation. This cohort study, preliminary to a randomized control trial (RCT), is aimed at evaluating, in a series of T1D children assuming Mediterranean diet and an intake of cholecalciferol of 1000U/day from T1D onset, if \u3c9-3 co-supplementation preserves the residual endogen insulin secretion (REIS). Therefore, the cohort of 22 \u201cnew onsets\u201d of 2017 received \u3c9-3 (eicosapentenoic acid (EPA) plus docosahexaenoic acid (DHA), 60 mg/kg/day), and were compared retrospectively vs. the 37 \u201cprevious onsets\u201d without \u3c9-3 supplementation. Glicosilated hemoglobin (HbA1c%), the daily insulin demand (IU/Kg/day) and IDAA1c, a composite index (calculated as IU/Kg/day 7 4 + HbA1c%), as surrogates of REIS, were evaluated at recruitment (T0) and 12 months later (T12). In the \u3c9-3 supplemented group, dietary intakes were evaluated at T0 and T12. As an outcome, a decreased insulin demand (p < 0.01), particularly as pre-meal boluses (p < 0.01), and IDAA1c (p < 0.05), were found in the \u3c9-3 supplemented group, while HbA1c% was not significantly different. Diet analysis in the \u3c9-3 supplemented group, at T12 vs. T0, highlighted that the intake of arachidonic acid (AA) decreased (p < 0.01). At T0, the AA intake was inversely correlated with HbA1c% (p < 0.05; r;. 0.411). In conclusion, the results suggest that vitamin D plus \u3c9-3 co-supplementation as well as AA reduction in the Mediterranean diet display benefits for T1D children at onset and deserve further investigation

    Chemical-Physical Changes in Cell Membrane Microdomains of Breast Cancer Cells After Omega-3 PUFA Incorporation

    Get PDF
    Epidemiologic and experimental studies suggest that dietary fatty acids influence the development and progression of breast cancer. However, no clear data are present in literature that could demonstrate how n\ua0-\ua03 PUFA can interfere with breast cancer growth. It is suggested that these fatty acids might change the structure of cell membrane, especially of lipid rafts. During this study we treated MCF-7 and MDA-MB-231 cells with AA, EPA, and DHA to assess if they are incorporated in lipid raft phospholipids and are able to change chemical and physical properties of these structures. Our data demonstrate that PUFA and their metabolites are inserted with different yield in cell membrane microdomains and are able to alter fatty acid composition without decreasing the total percentage of saturated fatty acids that characterize these structures. In particular in MDA-MB-231 cells, that displays the highest content of Chol and saturated fatty acids, we observed the lowest incorporation of DHA, probably for sterical reasons; nevertheless DHA was able to decrease Chol and SM content. Moreover, PUFA are incorporated in breast cancer lipid rafts with different specificity for the phospholipid moiety, in particular PUFA are incorporated in PI, PS, and PC phospholipids that may be relevant to the formation of PUFA metabolites (prostaglandins, prostacyclins, leukotrienes, resolvines, and protectines) of phospholipids deriving second messengers and signal transduction activation. The bio-physical changes after n\ua0-\ua03 PUFA incubation have also been highlighted by atomic force microscopy. In particular, for both cell lines the DHA treatment produced a decrease of the lipid rafts in the order of about 20-30\ua0%. It is worth noticing that after DHA incorporation lipid rafts exhibit two different height ranges. In fact, some lipid rafts have a higher height of 6-6.5\ua0nm. In conclusion n\ua0-\ua03 PUFA are able to modify lipid raft biochemical and biophysical features leading to decrease of breast cancer cell proliferation probably through different mechanisms related to acyl chain length and unsaturation. While EPA may contribute to cell apoptosis mainly through decrease of AA concentration in lipid raft phospholipids, DHA may change the biophysical properties of lipid rafts decreasing the content of cholesterol and probably the distribution of key proteins

    Lipid Reshaping and Lipophagy Are Induced in a Modeled Ischemia-Reperfusion Injury of Blood Brain Barrier

    Get PDF
    Ischemic-reperfusion (I/R) injury induced a remodeling of protein and lipid homeostasis, under oxidative stress and inflammatory status. Starvation occurring during I/R is a condition leading to autophagy activation, which allows abnormal material clearance or amino acid, or both, and fatty acid (FA) recycling essential for survival. This study investigated the lipid reshaping, peroxidation, and related-signaling pathways, in rat brain endothelial cells (RBE4) subjected to 3 h of oxygen and glucose deprivation (OGD) and restoration of standard condition (I/R in vitro model). Lipids and proteins were analyzed after 1 or 24 h of oxygen and nutrient restoration. Together with the oxidative stress and inflammatory status, I/R injury induced a reshaping of neutral lipids and biogenesis of lipid droplets (LD) with excessive lipid storage. The increase of LC3-II/LC3-I ratio, an autophagy marker, and LC3 co-localization with LD suggest the activation of lipophagy machinery to counteract the cell engulfment. Lipophagy leads to cholesterol ester (CE) hydrolysis, increasing free cholesterol (FC) secretion, which occurred by specific transporters or unconventional exocytosis pathways, or both. Here, we propose that an unconventional spreading of FC and other lipid metabolites may influence the neurovascular unit (NVU) cells, contributing to Blood brain barrier (BBB) alteration or adaptation, or both, to the cumulative effects of several transient ischemia
    • …
    corecore