1,477 research outputs found
Psychological targeting as an effective approach to digital mass persuasion
People are exposed to persuasive communication across many different contexts: governments, companies, and political parties use persuasive appeals to encourage people to eat healthier, purchase a particular product, or vote for a specific candidate. Laboratory studies show that such persuasive appeals are more effective in influencing behavior when they are tailored to individuals’ unique psychological characteristics. Yet, the investigation of large-scale psychological persuasion in the real world has been hindered by the questionnaire-based nature of psychological assessment. Recent research, however, shows that people’s psychological characteristics can be accurately predicted from their digital footprints, such as their Facebook Likes or Tweets. Capitalizing on this new form of psychological assessment from digital footprints, we test the effects of psychological persuasion on people’s actual behavior in an ecologically valid setting. In three field experiments that reached over 3.5 million individuals with psychologically-tailored advertising, we find that matching the content of persuasive appeals to individuals’ psychological characteristics significantly altered their behavior as measured by clicks and purchases. Persuasive appeals that were matched to people’s extraversion or openness-to-experience level resulted in up to 40% more clicks and up to 50% more purchases than their mismatching or un-personalized counterparts. Our findings suggest that the application of psychological targeting makes it possible to influence the behavior of large groups of people by tailoring persuasive appeals to the psychological needs of the target audiences. We discuss both the potential benefits of this method for helping individuals make better decisions and the potential pitfalls related to manipulation and privacy
Capabilities of GRO/OSSE for observing solar flares
The launch of the Gamma Ray Observatory (GRO) near solar maximum makes solar flare studies early in the mission particularly advantageous. The Oriented Scintillation Spectrometer Experiment (OSSE) on GRO, covering the energy range 0.05 to 150 MeV, has some significant advantages over the previous generation of satellite-borne gamma-ray detectors for solar observations. The OSSE detectors will have about 10 times the effective area of the Gamma-Ray Spectrometer (GRS) on Solar Maximum Mission (SMM) for both photons and high-energy neutrons. The OSSE also has the added capability of distinguishing between high-energy neutrons and photons directly. The OSSE spectral accumulation time (approx. 4s) is four times faster than that of the SMM/GRS; much better time resolution is available in selected energy ranges. These characteristics will allow the investigation of particle acceleration in flares based on the evolution of the continuum and nuclear line components of flare spectra, nuclear emission in small flares, the anisotropy of continuum emission in small flares, and the relative intensities of different nuclear lines. The OSSE observational program will be devoted primarily to non-solar sources. Therefore, solar observations require planning and special configurations. The instrumental and operational characteristics of OSSE are discussed in the context of undertaking solar observations. The opportunities for guest investigators to participate in solar flare studies with OSSE is also presented
Multipliers for p-Bessel sequences in Banach spaces
Multipliers have been recently introduced as operators for Bessel sequences
and frames in Hilbert spaces. These operators are defined by a fixed
multiplication pattern (the symbol) which is inserted between the analysis and
synthesis operators. In this paper, we will generalize the concept of Bessel
multipliers for p-Bessel and p-Riesz sequences in Banach spaces. It will be
shown that bounded symbols lead to bounded operators. Symbols converging to
zero induce compact operators. Furthermore, we will give sufficient conditions
for multipliers to be nuclear operators. Finally, we will show the continuous
dependency of the multipliers on their parameters.Comment: 17 page
A Study of Mo(4+)Quinoxalyl-Dithiolenes as Models for the Non-Innocent Pyranopterin in the Molybdenum Cofactor
A model system for the molybdenum cofactor has been developed that illustrates the noninnocent behavior of an N-heterocycle appended to a dithiolene chelate on molybdenum. The pyranopterin of the molybdenum cofactor is modeled by a quinoxalyldithiolene ligand (S(2)BMOQO) formed from the reaction of molybdenum tetrasulfide and quinoxalylalkyne. The resulting complexes TEA[Tp*MoX(S(2)BMOQO)] [1, X = S; 3, X = O; TEA = tetraethylammonium; Tp* = hydrotris(3,5-dimethylpyrazolyl)borate] undergo a dehydration-driven intramolecular cyclization within quinoxalyldithiolene, forming Tp*MoX(pyrrolo-S(2)BMOQO) (2, X = S; 4, X = O). 4 can be oxidized by one electron to produce the molybdenum(5+) complex 5. In a preliminary report of this work, evidence from X-ray crystallography, electronic absorption and resonance Raman spectroscopies, and density functional theory (DFT) bonding calculations revealed that 4 possesses an unusual asymmetric dithiolene chelate with significant thione-thiolate character. The results described here provide a detailed description of the reaction conditions that lead to the formation of 4. Data from cyclic voltammetry, additional DFT calculations, and several spectroscopic methods (IR, electronic absorption, resonance Raman, and electron paramagnetic resonance) have been used to characterize the properties of members in this suite of five Mo(S(2)BMOQO) complexes and further substantiate the highly electron-withdrawing character of the pyrrolo-S(2)BMOQO ligand in 2, 4, and 5. This study of the unique noninnocent ligand S(2)BMOQO provides examples of the roles that the N-heterocycle pterin can play as an essential part of the molybdenum cofactor. The versatile nature of a dithiolene appended by heterocycles may aid in modulating the redox processes of the molybdenum center during the course of enzyme catalysis
Analytical Models of Effective DOS, Saturation Velocity and High-Field Mobility for SiGe HBTs Numerical Simulation
Abstract-Effective density of state, saturation velocity and high field mobility analytical models for hydrodynamic simulation of silicon-germanium hetero-junction bipolar transistors have been derived
A Study of Mo(4+)Quinoxalyl-Dithiolenes as Models for the Non-Innocent Pyranopterin in the Molybdenum Cofactor
A model system for the molybdenum cofactor has been developed that illustrates the noninnocent behavior of an N-heterocycle appended to a dithiolene chelate on molybdenum. The pyranopterin of the molybdenum cofactor is modeled by a quinoxalyldithiolene ligand (S(2)BMOQO) formed from the reaction of molybdenum tetrasulfide and quinoxalylalkyne. The resulting complexes TEA[Tp*MoX(S(2)BMOQO)] [1, X = S; 3, X = O; TEA = tetraethylammonium; Tp* = hydrotris(3,5-dimethylpyrazolyl)borate] undergo a dehydration-driven intramolecular cyclization within quinoxalyldithiolene, forming Tp*MoX(pyrrolo-S(2)BMOQO) (2, X = S; 4, X = O). 4 can be oxidized by one electron to produce the molybdenum(5+) complex 5. In a preliminary report of this work, evidence from X-ray crystallography, electronic absorption and resonance Raman spectroscopies, and density functional theory (DFT) bonding calculations revealed that 4 possesses an unusual asymmetric dithiolene chelate with significant thione-thiolate character. The results described here provide a detailed description of the reaction conditions that lead to the formation of 4. Data from cyclic voltammetry, additional DFT calculations, and several spectroscopic methods (IR, electronic absorption, resonance Raman, and electron paramagnetic resonance) have been used to characterize the properties of members in this suite of five Mo(S(2)BMOQO) complexes and further substantiate the highly electron-withdrawing character of the pyrrolo-S(2)BMOQO ligand in 2, 4, and 5. This study of the unique noninnocent ligand S(2)BMOQO provides examples of the roles that the N-heterocycle pterin can play as an essential part of the molybdenum cofactor. The versatile nature of a dithiolene appended by heterocycles may aid in modulating the redox processes of the molybdenum center during the course of enzyme catalysis
Noninnocent Dithiolene Ligands: A New Oxomolybdenum Complex Possessing a Donor-Acceptor Dithiolene Ligand
A new monoanionic dithiolene ligand is found in Tp*MoO(S(2)BMOQO). A combination of x-ray crystallography, electronic absorption and resonance Raman spectroscopies, and bonding calculations reveal that the monoanionic dithiolene ligand possesses considerable thiolate-thione character resulting from admixture of an intraligand charge transfer excited state into the ground state wavefunction. The unusual dithiolene exhibits a highly versatile donor-acceptor character that dramatically lowers the Mo(IV/V) redox couple and points to a potentially non-innocent role of the pterin fragment in pyranopterin Mo enzymes. [Image: see text
Simulated Wildfire Smoke Significantly Alters Sperm DNA Methylation Patterns in a Murine Model
Wildfires are now a common feature of the western US, increasing in both intensity and number of acres burned over the last three decades. The effects of this changing wildfire and smoke landscape are a critical public and occupational health issue. While respiratory morbidity due to smoke exposure is a priority, evaluating the molecular underpinnings that explain recent extrapulmonary observations is necessary. Here, we use an Apoe−/− mouse model to investigate the epigenetic impact of paternal exposure to simulated wildfire smoke. We demonstrate that 40 days of exposure to smoke from Douglas fir needles induces sperm DNA methylation changes in adult mice. DNA methylation was measured by reduced representation bisulfite sequencing and varied significantly in 3353 differentially methylated regions, which were subsequently annotated to 2117 genes. The differentially methylated regions were broadly distributed across the mouse genome, but the vast majority (nearly 80%) were hypermethylated. Pathway analyses, using gene-derived and differentially methylated region-derived gene ontology terms, point to a number of developmental processes that may warrant future investigation. Overall, this study of simulated wildfire smoke exposure suggests paternal reproductive risks are possible with prolonged exposure
OSSE spectral analysis techniques
Analysis of the spectra from the Oriented Scintillation Spectrometer Experiment (OSSE) is complicated because of the typically low signal to noise (approx. 0.1 percent) and the large background variability. The OSSE instrument was designed to address these difficulties by periodically offset-pointing the detectors from the source to perform background measurements. These background measurements are used to estimate the background during each of the source observations. The resulting background-subtracted spectra can then be accumulated and fitted for spectral lines and/or continua. Data selection based on various environmental parameters can be performed at various stages during the analysis procedure. In order to achieve the instrument's statistical sensitivity, however, it will be necessary for investigators to develop a detailed understanding of the instrument operation, data collection, and the background spectrum and its variability. A brief description of the major steps in the OSSE spectral analysis process is described, including a discussion of the OSSE background spectrum and examples of several observational strategies
- …