6,190 research outputs found
Penetrating particle ANalyzer (PAN)
PAN is a scientific instrument suitable for deep space and interplanetary
missions. It can precisely measure and monitor the flux, composition, and
direction of highly penetrating particles (100 MeV/nucleon) in deep
space, over at least one full solar cycle (~11 years). The science program of
PAN is multi- and cross-disciplinary, covering cosmic ray physics, solar
physics, space weather and space travel. PAN will fill an observation gap of
galactic cosmic rays in the GeV region, and provide precise information of the
spectrum, composition and emission time of energetic particle originated from
the Sun. The precise measurement and monitoring of the energetic particles is
also a unique contribution to space weather studies. PAN will map the flux and
composition of penetrating particles, which cannot be shielded effectively,
precisely and continuously, providing valuable input for the assessment of the
related health risk, and for the development of an adequate mitigation
strategy. PAN has the potential to become a standard on-board instrument for
deep space human travel.
PAN is based on the proven detection principle of a magnetic spectrometer,
but with novel layout and detection concept. It will adopt advanced particle
detection technologies and industrial processes optimized for deep space
application. The device will require limited mass (~20 kg) and power (~20 W)
budget. Dipole magnet sectors built from high field permanent magnet Halbach
arrays, instrumented in a modular fashion with high resolution silicon strip
detectors, allow to reach an energy resolution better than 10\% for nuclei from
H to Fe at 1 GeV/n
Power laws in microrheology experiments on living cells: comparative analysis and modelling
We compare and synthesize the results of two microrheological experiments on
the cytoskeleton of single cells. In the first one, the creep function J(t) of
a cell stretched between two glass plates is measured after applying a constant
force step. In the second one, a micrometric bead specifically bound to
transmembrane receptors is driven by an oscillating optical trap, and the
viscoelastic coefficient is retrieved. Both and
exhibit power law behavior: and , with the same exponent
. This power law behavior is very robust ; is
distributed over a narrow range, and shows almost no dependance on the cell
type, on the nature of the protein complex which transmits the mechanical
stress, nor on the typical length scale of the experiment. On the contrary, the
prefactors and appear very sensitive to these parameters. Whereas
the exponents are normally distributed over the cell population, the
prefactors and follow a log-normal repartition. These results are
compared with other data published in the litterature. We propose a global
interpretation, based on a semi-phenomenological model, which involves a broad
distribution of relaxation times in the system. The model predicts the power
law behavior and the statistical repartition of the mechanical parameters, as
experimentally observed for the cells. Moreover, it leads to an estimate of the
largest response time in the cytoskeletal network: s.Comment: 47 pages, 14 figures // v2: PDF file is now Acrobat Reader 4 (and up)
compatible // v3: Minor typos corrected - The presentation of the model have
been substantially rewritten (p. 17-18), in order to give more details -
Enhanced description of protocols // v4: Minor corrections in the text : the
immersion angles are estimated and not measured // v5: Minor typos corrected.
Two references were clarifie
Quantum Monte Carlo Method for Attractive Coulomb Potentials
Starting from an exact lower bound on the imaginary-time propagator, we
present a Path-Integral Quantum Monte Carlo method that can handle singular
attractive potentials. We illustrate the basic ideas of this Quantum Monte
Carlo algorithm by simulating the ground state of hydrogen and helium.Comment: 7 pages, 3 table
Calcitriol-mediated modulation of urokinase-type plasminogen activator and plasminogen activator inhibitor-2
Calcitriol-induced differentiation of U937 mononuclear phagocytes is known to have divergent effects on the synthesis of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-2 (PAI-2). In this study, we sought to determine whether calcitriol affects the expression of these proteins by modulating intermediate signal trasduction involving intracellular calcium and protein kinase C (PKC). U937 cells were stimulated with calcitriol (50 nM) for 6-72 hr, inducing a transient increase in specific binding of [3H]phorbol dibutyrate ([3H]PDBu), seen only after 24 hr. Staurosporine (2 nM), a PKC inhibitor, had no effect on calcitriol-induced secretion of plasminogen activator (PA) activity. However, staurosporine significantly (P < 0.05) inhibited the ability of calcitriol to enhance phorbol myristate acetate (PMA)-induced secretion of PA inhibitor activity, indicating that this priming effect of calcitriol requires expression of PKC. The calcium ionophore A23187 (0.1 [mu]M) induced a modest increase in secreted PA inhibitor activity, in contrast to the secretion of PA activity which is consistently seen in response to calcitriol. Northern blot analysis demonstrated that A23187 induced an increase in PAI-2 mRNA and a marked reduction in uPA mRNA, while calcitriol induced opposite changes in both mRNA species. We conclude that calcitriol modulates uPA and PAI-2 expression by multiple mechanisms that are both PKC dependent and PKC independent. Our studies also demonstrated that increased intracellular calcium alters the synthesis of both uPA and PAI-2 in a manner which favors expression of PA inhibitor activity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29456/1/0000538.pd
Branching dendrites with resonant membrane: a “sum-over-trips” approach
Dendrites form the major components of neurons. They are complex branching structures that receive and process thousands of synaptic inputs from other neurons. It is well known that dendritic morphology plays an important role in the function of dendrites. Another important contribution to the response characteristics of a single neuron comes from the intrinsic resonant properties of dendritic membrane. In this paper we combine the effects of dendritic branching and resonant membrane dynamics by generalising the “sum-over-trips” approach (Abbott et al. in Biol Cybernetics 66, 49–60 1991). To illustrate how this formalism can shed light on the role of architecture and resonances in determining neuronal output we consider dual recording and reconstruction data from a rat CA1 hippocampal pyramidal cell. Specifically we explore the way in which an Ih current contributes to a voltage overshoot at the soma
Na+ imaging reveals little difference in action potential–evoked Na+ influx between axon and soma
Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Neuroscience 13 (2010): 852-860, doi:10.1038/nn.2574.In cortical pyramidal neurons, the axon initial segment (AIS) plays a pivotal role in synaptic
integration. It has been asserted that this property reflects a high density of Na+ channels in AIS.
However, we here report that AP–associated Na+ flux, as measured by high–speed fluorescence
Na+ imaging, is about 3 times larger in the rat AIS than in the soma. Spike evoked Na+ flux in
the AIS and the first node of Ranvier is about the same, and in the basal dendrites it is about 8
times lower. At near threshold voltages persistent Na+ conductance is almost entirely axonal.
Finally, we report that on a time scale of seconds, passive diffusion and not pumping is
responsible for maintaining transmembrane Na+ gradients in thin axons during high frequency
AP firing. In computer simulations, these data were consistent with the known features of AP
generation in these neurons.Supported by US–
Israel BSF Grant (2003082), Grass Faculty Grant from the MBL, NIH Grant (NS16295),
Multiple Sclerosis Society Grant (PP1367), and a fellowship from the Gruss Lipper Foundation
Design considerations in a clinical trial of a cognitive behavioural intervention for the management of low back pain in primary care : Back Skills Training Trial
Background
Low back pain (LBP) is a major public health problem. Risk factors for the development and persistence of LBP include physical and psychological factors. However, most research activity has focused on physical solutions including manipulation, exercise training and activity promotion.
Methods/Design
This randomised controlled trial will establish the clinical and cost-effectiveness of a group programme, based on cognitive behavioural principles, for the management of sub-acute and chronic LBP in primary care. Our primary outcomes are disease specific measures of pain and function. Secondary outcomes include back beliefs, generic health related quality of life and resource use. All outcomes are measured over 12 months. Participants randomised to the intervention arm are invited to attend up to six weekly sessions each of 90 minutes; each group has 6–8 participants. A parallel qualitative study will aid the evaluation of the intervention.
Discussion
In this paper we describe the rationale and design of a randomised evaluation of a group based cognitive behavioural intervention for low back pain
- …