4,674 research outputs found

    Skylab neutron environment experiment (Science Demonstration SD-34 (TV108)). Description and preliminary results

    Get PDF
    Neutron and proton induced radioactivity at various locations within Skylab were measured. Samples of five metals were formed into activation packets and deployed at the following locations on the Skylab 4 mission: orbital workshop film vault, water storage tank, and two opposing orbital workshop internal locations. Radioactive nuclides were produced in the packets by nuclear interactions of high-energy protons and secondary neutrons within Skylab. Low-level gamma ray spectroscopy measurements were made on the returned packets to determine the incident neutron and proton fluxes and spectra and their variations with mass distribution

    Radiation environment and hazards for a geosynchronous space station

    Get PDF
    An evaluation was made of the potential radiation hazards to the crew and equipment of a geosynchronous space station. Tissue dose rates for electron, bremsstrahlung, galactic cosmic rays, and solar proton events are included for parking longitudes of 110 and 290 degrees at orbit inclinations of 0, 30, and 45 degrees

    HEAO-A nominal scanning observation schedule

    Get PDF
    The HEAO-A observatory, scheduled for launch in late June 1977, will spend most of its orbital lifetime in a scanning mode, spining from 0.03 to 0.1 rpm about an axis aligned with the sun. The dates of availability in the scan band are given for a list of 248 X-ray sources. Celestial maps of source locations and scan planes, and examples of the nighttime elevation of available sources are presented. This document is intended to aid ground-based observers in planning coordinated observations with HEAO-A

    Outline bibliography, and KWIC index on mechanical theorem proving and its applications

    Get PDF
    Bibliography and KWIC index on mechanical theorem proving and its application

    Capabilities of the GRO/BATSE for monitoring of discrete sources

    Get PDF
    Although the Burst and Transient Source Experiment (BATSE) to be flown on the Gamma Ray Observatory has as its primary objective the detection of gamma ray bursts, its uncollimated design will enable it to serve a unique function as an all-sky monitor for bright hard X-ray and low-energy gamma ray sources. Pulsating sources may be detected by conventional techniques such as summed-epoch and Fourier analyses. The BATSE will, in addition, be able to use Earth occultation in an unprecedented way to monitor sufficiently bright sources as often as several times per day over approx. 85% of the sky. Estimates of the expected BATSE sensitivity using both of these techniques are presented

    Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks

    Get PDF
    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The ``jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.Comment: 4 pages, 1 figure, submitted to Proceedings of 2003 Gamma Ray Burst Conferenc

    Acceleration Mechanics in Relativistic Shocks by the Weibel Instability

    Full text link
    Plasma instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks may be responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated long-term particle acceleration associated with relativistic electron-ion or electron-positron jet fronts propagating into an unmagnetized ambient electron-ion or electron-positron plasma. These simulations have been performed with a longer simulation system than our previous simulations in order to investigate the nonlinear stage of the Weibel instability and its particle acceleration mechanism. The current channels generated by the Weibel instability are surrounded by toroidal magnetic fields and radial electric fields. This radial electric field is quasi stationary and accelerates particles which are then deflected by the magnetic field.Comment: 17 pages, 5 figures, accepted for publication in ApJ, A full resolution ot the paper can be found at http://gammaray.nsstc.nasa.gov/~nishikawa/accmec.pd
    corecore