13 research outputs found

    Blue Arabia : Palaeolithic and Underwater Survey in SW Saudi Arabia and the Role of Coasts in Pleistocene Dispersal

    Get PDF
    The role of coastal regions and coastlines in the dispersal of human populations from Africa and across the globe has been highlighted by the recent polarisation between coastal and interior models. The debate has been clouded by the use of the single term ‘coastal dispersal’ to embrace what is in fact a wide spectrum of possibilities, ranging from seafaring populations who spend most of their time at sea living off marine resources, to land-based populations in coastal regions with little or no reliance on marine foods. An additional complicating factor is the fact of Pleistocene and early Holocene sea-level change, which exposed an extensive coastal region that is now submerged, and may have afforded very different conditions from the modern coastal environment. We examine these factors in the Arabian context and use the term ‘Blue’ to draw attention to the fertile coastal rim of the Arabian Peninsula, and to the now submerged offshore landscape, which is especially extensive in some regions. We further emphasise that the attractions of the coastal rim are a product of two quite different factors, ecological diversity and abundant water on land, which have created persistently ‘Green’ conditions throughout the vagaries of Pleistocene climate change in some coastal regions, especially along parts of the western Arabian escarpment, and potentially productive marine environments around its coastline, which include some of the most fertile in the world. We examine the interplay of these factors in the Southwest region of Saudi Arabia and the southern Red Sea, and summarise some of the results of recent DISPERSE field investigations, including survey for Palaeolithic sites on the mainland, and underwater survey of the continental shelf in the vicinity of the Farasan Islands. We conclude that coastlines are neither uniformly attractive nor uniformly marginal to human dispersal, that they offer diverse opportunities that were spatially and temporally variable at scales from the local to the continental, and that investigating Blue Arabia in relation to its episodically Green interior is a key factor in the fuller understanding of long-term human population dynamics within Arabia and their global implications

    Publishing and sharing multi-dimensional image data with OMERO

    Get PDF
    Imaging data are used in the life and biomedical sciences to measure the molecular and structural composition and dynamics of cells, tissues, and organisms. Datasets range in size from megabytes to terabytes and usually contain a combination of binary pixel data and metadata that describe the acquisition process and any derived results. The OMERO image data management platform allows users to securely share image datasets according to specific permissions levels: data can be held privately, shared with a set of colleagues, or made available via a public URL. Users control access by assigning data to specific Groups with defined membership and access rights. OMERO’s Permission system supports simple data sharing in a lab, collaborative data analysis, and even teaching environments. OMERO software is open source and released by the OME Consortium at www.openmicroscopy.org

    Quantitative micro-analysis of metal ions in subcellular compartments of cultured dopaminergic cells by combination of three ion beam techniques

    No full text
    Quantification of the trace element content of subcellular compartments is a challenging task because of the lack of analytical quantitative techniques with adequate spatial resolution and sensitivity. Ion beam micro-analysis, using MeV protons or alpha particles, offers a unique combination of analytical methods that can be used with micrometric resolution for the determination of chemical element distributions. This work illustrates how the association of three ion beam analytical methods, PIXE (particle induced X-ray emission), BS (backscattering spectrometry), and STIM (scanning transmission ion spectrometry), allows quantitative determination of the trace element content of single cells. PIXE is used for trace element detection while BS enables beam-current normalization, and STIM local mass determination. These methods were applied to freeze-dried cells, following a specific cryogenic protocol for sample preparation which preserves biological structures and chemical distributions in the cells. We investigated how iron accumulates into dopaminergic cells cultured in vitro. We found that the iron content increases in dopaminergic cells exposed to an excess iron, with marked accumulation within distal ends, suggesting interaction between iron and dopamine within neurotransmitter vesicles. Increased iron content of dopaminergic neurons is suspected to promote neurodegeneration in Parkinson's disease. © 2008 Springer-Verlag.The development of these experiments was supported by the European program of integrated action “Picasso”.Peer Reviewe

    Influence of TiO2 nano-objects characteristics on Caernorhabditis elegans development

    No full text
    Metal oxide nanoparticles (NPs) such as titanium dioxide (TiO2) are in the center of attention, because of their outstanding properties and relatively low cost of production. However, synthesis and utilization of NPs potentially also involve release and accumulation in the environment. Few data are available concerning the potential toxicity of NPs on ecosystems. In this context, we study the ecotoxicological effects of both native and fluorescently-tagged TiO2 nano-objects with different morphologies (P25 Evonik, nanotubes, nanoneedles) on the nematode Caenorhabditis elegans population. This worm is commonly used in ecotoxicological assays because of its convenient handling in the laboratory, and its sensitivity to different stresses. NPs ingestion by L1 and L4 larvae was studied by fluorescence microscopy and ion beam analysis. NPs were found in the pharynx and in the intestine lumen whatever the larvae stage. The quantity of ingested and detected NPs was dependent of the presence of food during exposure in the medium. Without feeding, an increased NPs ingestion was found in association with a strong intestine anterior dilatation. This phenomenon was also generally observed following starvation and in a longer delay of experiment. The toxicity of TiO2 NPs in C. elegans was evaluated using three different endpoints: lethality, worm length and reproduction. Whatever the NPs and larvae stage, the resulting data obtained showed only mortality in L1 exposed with nanotubes. A significant decrease of worm length was observed for L1 and L4 exposed whatever the morphology of NPs as compared to untreated group. The reproduction of C. elegans was clearly affected with a decrease of the eggs number per worm. Our findings suggest that the NPs toxicity depends very much on their physico-chemical characteristics (size, morphology) and has a different impact on the larvae stage exposed

    Electric fields in liquid water irradiated with protons at ultrahigh dose rates

    No full text
    International audienceWe study the effects of irradiating water with 3 MeV protons at high doses by observing the motion of charged polystyrene beads outside the proton beam. By single-particle tracking, we measure a radial velocity of the order of microns per second. Combining electrokinetic theory with simulations of the beamgenerated reaction products and their outward diffusion, we find that the bead motion is due to electrophoresis in the electric field induced by the mobility contrast of cations and anions. This work sheds light on the perturbation of biological systems by high-dose radiations and paves the way for the manipulation of colloid or macromolecular dispersions by radiation-induced diffusiophoresis

    A comparison of quantitative reconstruction techniques for PIXE-tomography analysis applied to biological samples

    No full text
    International audienceThe tomographic reconstruction of biological specimens requires robust algorithms, able to deal with low density contrast and low element concentrations. At the IST/ITN microprobe facility new GPU-accelerated reconstruction software, JPIXET, has been developed, which can significantly increase the speed of quantitative reconstruction of Proton Induced X-ray Emission Tomography (PIXE-T) data. It has a user-friendly graphical user interface for pre-processing, data analysis and reconstruction of PIXE-T and Scanning Transmission Ion Microscopy Tomography (STIM-T). The reconstruction of PIXE-T data is performed using either an algorithm based on a GPU-accelerated version of the Maximum Likelihood Expectation Maximisation (MLEM) method or a GPU-accelerated version of the Discrete Image Space Reconstruction Algorithm (DISRA) (Sakellariou (2001) [2]). The original DISRA, its accelerated version, and the MLEM algorithm, were compared for the reconstruction of a biological sample of Caenorhabditis elegans - a small worm. This sample was analysed at the microbeam line of the AIFIRA facility of CENBG, Bordeaux. A qualitative PIXE-T reconstruction was obtained using the CENBG software package TomoRebuild (Habchi et al. (2013) [6]). The effects of pre-processing and experimental conditions on the elemental concentrations are discussed

    Quantitative reconstruction of PIXE-tomography data for thin samples using GUPIX X-ray emission yields

    No full text
    We present here a new development of the TomoRebuild software package, to perform quantitative Particle Induced X-ray Emission Tomography (PIXET) reconstruction. X-ray yields are obtained from the GUPIX code. The GUPIX data base is available for protons up to 5 MeV and also in the 20–100 MeV energy range, deuterons up to 6 MeV, 3He and alphas up to 12 MeV. In this version, X-ray yields are calculated for thin samples, i.e. without simulating X-ray attenuation. PIXET data reconstruction is kept as long as possible independent from Scanning Transmission Ion Microscopy Tomography (STIMT). In this way, the local mass distribution (in g/cm3) of each X-ray emitting element is reconstructed in all voxels of the analyzed volume, only from PIXET data, without the need of associated STIMT data. Only the very last step of data analysis requires STIMT data, in order to normalize PIXET data to obtain concentration distributions, in terms of normalized mass fractions (in ÎŒg/g). For this, a noise correction procedure has been designed in ImageJ. Moreover sinogram or image misalignment can be corrected, as well as the difference in beam size between the two experiments. The main features of the TomoRebuild code, user friendly design and modular C++ implementation, were kept. The software package is portable and can run on Windows and Linux operating systems. An optional user-friendly graphic interface was designed in Java, as a plugin for the ImageJ graphic software package. Reconstruction examples are presented from biological specimens of Caenorhabditis elegans – a small nematode constituting a reference model for biology studies. The reconstruction results are compared between the different codes TomoRebuild, DISRA and JPIXET, and different reconstruction methods: Filtered BackProjection (FBP) and Maximum Likelihood Expectation Maximization (MLEM).MĂ©canismes d'internalisation et de toxicitĂ© des nanoparticules d'oxyde de titane dans des organismes multicellulaires eucaryotesSupport of Public and Industrial Research using Ion Beam Technolog
    corecore