2,115 research outputs found

    Particle yields in heavy ion collisions and the influence of strong magnetic fields

    Full text link
    It is expected that the magnetic field in the surface of magnetars do not exceed 101510^{15} G. However, in heavy ion collisions, this value is expected to be much higher. We investigate the effects of a magnetic fields varying from 101810^{18}, to 102010^{20} G in strange matter (composed of uu, dd and ss quarks). We model matter as a free gas of baryons and mesons under the influence of an external magnetic field. We study the effects of such strong fields through a χ2\chi^2 fit to some data sets of the STAR experiment. For this purpose we solve the Dirac, Rarita-Schwinger, Klein-Gordon and Proca equations subject to magnetic fields in order to obtain the energy expressions and the degeneracy for spin 1/2, spin 3/2, spin 0 and spin 1 particles, respectively. Our results show that a field of the order of 101910^{19} G produces an improved fitting to the experimental data as compared to the calculations without magnetic field.Comment: 20 pages, 16 figures, 4 table

    Landau parameters for isospin asymmetric nuclear matter based on a relativistic model of composite and finite extension nucleons

    Get PDF
    We study the properties of cold asymmetric nuclear matter at high density, applying the quark meson coupling model with excluded volume corrections in the framework of the Landau theory of relativistic Fermi liquids. We discuss the role of the finite spatial extension of composite baryons on dynamical and statistical properties such as the Landau parameters, the compressibility, and the symmetry energy. We have also calculated the low lying collective eigenfrequencies arising from the collisionless quasiparticle transport equation, considering both unstable and stable modes. An overall analysis of the excluded volume correlations on the collective properties is performed.Comment: 24 pages, 6 figure

    Participatory design, beyond the local

    Get PDF
    This workshop aims at stimulating and opening a debate around the capacity of Participatory Design (PD) and other co-design approaches to deliver outcomes and methodologies that can have an impact and value for reuse well beyond the local context in which they were originally developed. This will be achieved by stimulating the submission of position papers by researchers from the PD community and beyond.These papers will be discussed during the workshop in order to identify challenges, obstacles but also potentials for scaling up PD processes and results from the local to the global.</p

    Self-DNA Early Exposure in Cultivated and Weedy Setaria Triggers ROS Degradation Signaling Pathways and Root Growth Inhibition

    Get PDF
    The accumulation of fragmented extracellular DNA reduces conspecific seed germination and plantlet growth in a concentration-dependent manner. This self-DNA inhibition was repeatedly reported, but the underlying mechanisms are not fully clarified. We investigated the species-specificity of self-DNA inhibition in cultivated vs. weed congeneric species (respectively, Setaria italica and S. pumila) and carried out a targeted real-time qPCR analysis under the hypothesis that self-DNA elicits molecular pathways that are responsive to abiotic stressors. The results of a cross-factorial experiment on root elongation of seedlings exposed to self-DNA, congeneric DNA, and heterospecific DNA from Brassica napus and Salmon salar confirmed a significantly higher inhibition by self-DNA as compared to non-self-treatments, with the latter showing a magnitude of the effect consistent with the phylogenetic distance between the DNA source and the target species. Targeted gene expression analysis highlighted an early activation of genes involved in ROS degradation and management (FSD2, ALDH22A1, CSD3, MPK17), as well as deactivation of scaffolding molecules acting as negative regulators of stress signaling pathways (WD40-155). While being the first exploration of early response to self-DNA inhibition at molecular level on C4 model plants, our study highlights the need for further investigation of the relationships between DNA exposure and stress signaling pathways by discussing potential applications for species-specific weed control in agriculture

    Targeted mutagenesis of the female-suppressor sygi gene in tetraploid kiwifruit by crispr/cas9

    Get PDF
    Kiwifruit belong to the genus Actinidia with 54 species apparently all functionally dioecious. The sex-determinants of the type XX/XY, with male heterogametic, operate independently of the ploidy level. Recently, the SyGI protein has been described as the suppressor of female development. In the present study, we exploited the CRISPR/Cas9 technology by targeting two different sites in the SyGI gene in order to induce a stable gene knock-out in two tetraploid male accessions of Actinidia chinensis var. chinensis. The two genotypes showed a regenerative efficiency of 58% and 73%, respectively. Despite not yet being able to verify the phenotypic effects on the flower structure, due to the long time required by tissue-cultured kiwifruit plants to flower, we obtained two regenerated lines showing near fixation of a unique modification in their genome, resulting in both cases in the onset of a premature stop codon, which induces the putative gene knock-out. Evaluation of gRNA1 locus for both regenerated plantlets resulted in co-amplification of a minor variant differing from the target region for a single nucleotide. A genomic duplication of the region in proximity of the Y genomic region could be postulated

    Cardiorespiratory fitness and sports activities in children and adolescents with solitary functioning kidney

    Get PDF
    Background: An increasing number of children with chronic disease require a complete medical examination to be able to practice physical activity. Particularly children with solitary functioning kidney (SFK) need an accurate functional evaluation to perform sports activities safely. The aim of our study was to evaluate the influence of regular physical activity on the cardiorespiratory function of children with solitary functioning kidney. Method: Twenty-nine patients with congenital SFK, mean age 13.9 ± 5.0 years, and 36 controls (C), mean age 13.8 ± 3.7 years, underwent a cardiorespiratory assessment with spirometry and maximal cardiopulmonary exercise testing. All subjects were divided in two groups: sedentary (S) and trained (T) patients, by means of a standardized questionnaire about their weekly physical activity. Results: We found that mean values of maximal oxygen consumption (VO2max) and exercise time (ET) were higher in T subjects than in S subjects. Particularly SFK-T presented mean values of VO2max similar to C-T and significantly higher than C-S (SFK-T: 44.7 ± 6.3 vs C-S: 37.8 ± 3.7 ml/min/kg; p < 0.0008). We also found significantly higher mean values of ET (minutes) in minutes in SFK-T than C-S subjects (SFK-T: 12.9 ± 1.6 vs C-S: 10.8 ± 2.5 min; p <0.02). Conclusion: Our study showed that regular moderate/high level of physical activity improve aerobic capacity (VO2max) and exercise tolerance in congenital SFK patients without increasing the risks for cardiovascular accidents and accordingly sports activities should be strongly encouraged in SFK patients to maximize health benefit

    The Rarita-Schwinger Particles Under de Influence of Strong Magnetic Fields

    Full text link
    In this work, we calculate the solutions of the Rarita-Schwinger equation with the inclusion of the eletromagnetic interaction. Our gauge and coupling prescription choices lead to Dirac-type solutions. One of the consequences of our results are the Landau level occupation of particles, quite different from the usual spin 1/2 particle system occupation numbers.Comment: 12 page

    The TU Wien Turbulent Water Channel: Flow control loop and three-dimensional reconstruction of anisotropic particle dynamics

    Get PDF
    A horizontal water channel facility was built to study particle dynamics in a turbulent flow. The channel is sufficiently long to produce fully developed turbulence at the test section, and the width-to-height ratio is sufficiently large to avoid the sidewall effect for a large proportion of the cross-section. The system was designed to study the dynamics of complex-shaped particles in wall-bounded turbulence, the characteristics of which can be finely controlled. A maximum bulk velocity of up to 0.8 m s−1 can be achieved, corresponding to a bulk Reynolds number of up to 7 × 104 (shear Reynolds number ≈ 1580 ), and flow parameters can be controlled within ±0.1%. The transparent channel design and aluminum structures allow easy optical access, which enables multiple laser and camera arrangements. With the current optical setup, a measurement volume of up to 54 × 14 × 54 mm3 can be imaged and reconstructed with six cameras from the top, bottom, and sides of the channel. Finally, the in-house developed reconstruction and tracking procedure allows us to measure the full motion of complex objects (i.e., shape reconstruction, translational, and rotational motions), and in this instance, it is applied to the case of microscopic, non-isotropic polyamide fibers

    Boosting grapevine breeding for climate-smart viticulture: from genetic resources to predictive genomics

    Get PDF
    The multifaceted nature of climate change is increasing the urgency to select resilient grapevine varieties, or generate new, fitter cultivars, to withstand a multitude of new challenging conditions. The attainment of this goal is hindered by the limiting pace of traditional breeding approaches, which require decades to result in new selections. On the other hand, marker-assisted breeding has proved useful when it comes to traits governed by one or few genes with great effects on the phenotype, but its efficacy is still restricted for complex traits controlled by many loci. On these premises, innovative strategies are emerging which could help guide selection, taking advantage of the genetic diversity within the Vitis genus in its entirety. Multiple germplasm collections are also available as a source of genetic material for the introgression of alleles of interest via adapted and pioneering transformation protocols, which present themselves as promising tools for future applications on a notably recalcitrant species such as grapevine. Genome editing intersects both these strategies, not only by being an alternative to obtain focused changes in a relatively rapid way, but also by supporting a fine-tuning of new genotypes developed with other methods. A review on the state of the art concerning the available genetic resources and the possibilities of use of innovative techniques in aid of selection is presented here to support the production of climate-smart grapevine genotypes
    • …
    corecore