405 research outputs found

    First-Principles Approach to Electrorotation Assay

    Full text link
    We have presented a theoretical study of electrorotation assay based on the spectral representation theory. We consider unshelled and shelled spheroidal particles as an extension to spherical ones. From the theoretical analysis, we find that the coating can change the characteristic frequency at which the maximum rotational angular velocity occurs. The shift in the characteristic frequency is attributed to a change in the dielectric properties of the bead-coating complex with respect to those of the uncoated particles. By adjusting the dielectric properties and the thickness of the coating, it is possible to obtain good agreement between our theoretical predictions and the assay data.Comment: 17 pages, 4 eps figures; minor revisions, accepted for publications by J. Phys.: Condens. Matte

    Electrorotation of a pair of spherical particles

    Full text link
    We present a theoretical study of electrorotation (ER) of two spherical particles under the action of a rotating electric field. When the two particles approach and finally touch, the mutual polarization interaction between the particles leads to a change in the dipole moment of the individual particle and hence the ER spectrum, as compared to that of the well-separated particles. The mutual polarization effects are captured by the method of multiple images. From the theoretical analysis, we find that the mutual polarization effects can change the characteristic frequency at which the maximum angular velocity of electrorotation occurs. The numerical results can be understood in the spectral representation theory.Comment: Minor revisions; accepted by Phys. Rev.

    Imaging the first light: experimental challenges and future perspectives in the observation of the Cosmic Microwave Background Anisotropy

    Full text link
    Measurements of the cosmic microwave background (CMB) allow high precision observation of the Last Scattering Surface at redshift z∌z\sim1100. After the success of the NASA satellite COBE, that in 1992 provided the first detection of the CMB anisotropy, results from many ground-based and balloon-borne experiments have showed a remarkable consistency between different results and provided quantitative estimates of fundamental cosmological properties. During 2003 the team of the NASA WMAP satellite has released the first improved full-sky maps of the CMB since COBE, leading to a deeper insight into the origin and evolution of the Universe. The ESA satellite Planck, scheduled for launch in 2007, is designed to provide the ultimate measurement of the CMB temperature anisotropy over the full sky, with an accuracy that will be limited only by astrophysical foregrounds, and robust detection of polarisation anisotropy. In this paper we review the experimental challenges in high precision CMB experiments and discuss the future perspectives opened by second and third generation space missions like WMAP and Planck.Comment: To be published in "Recent Research Developments in Astronomy & Astrophysics Astrophysiscs" - Vol I

    Non-Gaussian bubbles in the sky

    Full text link
    We point out a possible generation mechanism of non-Gaussian bubbles in the sky due to bubble nucleation in the early universe. We consider a curvaton scenario for inflation and assume that the curvaton field phi, whose energy density is subdominant during inflation but which is responsible for the curvature perturbation of the universe, is coupled to another field sigma which undergoes false vacuum decay through quantum tunneling. For this model, we compute the skewness of the curvaton fluctuations due to its interaction with sigma during tunneling, that is, on the background of an instanton solution that describes false vacuum decay. We find that the resulting skewness of the curvaton can become large in the spacetime region inside the bubble. We then compute the corresponding skewness in the statistical distribution of the cosmic microwave background (CMB) temperature fluctuations. We find a non-vanishing skewness in a bubble-shaped region in the sky. It can be large enough to be detected in the near future, and if detected it will bring us invaluable information about the physics in the early universe.Comment: 6 pages, 6 figure

    Assessing habitat-related disturbance in bird communities: Applying hemeroby and generalism as indicators

    Get PDF
    We tested the application of the concept of hemeroby and generalism at community level, on a set of birds occurring in various habitats of central Italy characterized by different level of disturbance. In each habitat-related bird community, we applied the recently published species-specific score in hemeroby (a proxy of habitat-related disturbance; HSi) and hemerobiotic diversity (a proxy of generalism; H’Hi) to local species frequency, obtaining weighted values at community level (HStot and H’Htot). The relationship between HStot vs. H’Htot showed an increasing trend moving from reed beds through forests and mosaics to urban communities. Quadratic model (best fit) evidenced a significant correlation between these variables and a tendency toward a hump-shaped curve, corroborating results already observed at species level (intermediate generalism hypothesis). The co-inertia analysis discriminated four groups of habitat-related communities, characterized by species with different levels of disturbance-sensitivity (expressed by HSi) and generalism (expressed by hemerobiotic diversity; H’Hi): (i) forest type-related, where mature wood communities were separated from a coppiced wood one; (ii) communities of moderately disturbed agricultural habitats; (iii) communities embedded in highly disturbed mosaics, and (iv) a group including either a highly disturbed urban habitat or a low disturbed wetland reed bed, with highly specialized species (respectively, synanthropic species and water-related species). Total scores in hemeroby and hemerobiotic diversity, expressing the composition in species with different disturbance preference and generalism, might act as good community-based indicators of degree of naturalness, especially for forest habitat types

    Map-making in small field modulated CMB polarisation experiments: approximating the maximum-likelihood method

    Full text link
    Map-making presents a significant computational challenge to the next generation of kilopixel CMB polarisation experiments. Years worth of time ordered data (TOD) from thousands of detectors will need to be compressed into maps of the T, Q and U Stokes parameters. Fundamental to the science goal of these experiments, the observation of B-modes, is the ability to control noise and systematics. In this paper, we consider an alternative to the maximum-likelihood method, called destriping, where the noise is modelled as a set of discrete offset functions and then subtracted from the time-stream. We compare our destriping code (Descart: the DEStriping CARTographer) to a full maximum-likelihood map-maker, applying them to 200 Monte-Carlo simulations of time-ordered data from a ground based, partial-sky polarisation modulation experiment. In these simulations, the noise is dominated by either detector or atmospheric 1/f noise. Using prior information of the power spectrum of this noise, we produce destriped maps of T, Q and U which are negligibly different from optimal. The method does not filter the signal or bias the E or B-mode power spectra. Depending on the length of the destriping baseline, the method delivers between 5 and 22 times improvement in computation time over the maximum-likelihood algorithm. We find that, for the specific case of single detector maps, it is essential to destripe the atmospheric 1/f in order to detect B-modes, even though the Q and U signals are modulated by a half-wave plate spinning at 5-Hz.Comment: 18 pages, 17 figures, MNRAS accepted v2: content added (inc: table 2), typos correcte

    A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of Boomerang

    Get PDF
    We report on observations of the Cosmic Microwave Background (CMB) obtained during the January 2003 flight of Boomerang . These results are derived from 195 hours of observation with four 145 GHz Polarization Sensitive Bolometer (PSB) pairs, identical in design to the four 143 GHz Planck HFI polarized pixels. The data include 75 hours of observations distributed over 1.84% of the sky with an additional 120 hours concentrated on the central portion of the field, itself representing 0.22% of the full sky. From these data we derive an estimate of the angular power spectrum of temperature fluctuations of the CMB in 24 bands over the multipole range (50 < l < 1500). A series of features, consistent with those expected from acoustic oscillations in the primordial photon-baryon fluid, are clearly evident in the power spectrum, as is the exponential damping of power on scales smaller than the photon mean free path at the epoch of last scattering (l > 900). As a consistency check, the collaboration has performed two fully independent analyses of the time ordered data, which are found to be in excellent agreement.Comment: 11 pages, 7 figures, 3 tables. High resolution figures and data are available at http://cmb.phys.cwru.edu/boomerang/ and http://oberon.roma1.infn.it/boomerang/b2

    Images of the Early Universe from the BOOMERanG experiment

    Get PDF
    The CMB is the fundamental tool to study the properties of the early universe and of the universe at large scales. In the framework of the Hot Big Bang model, when we look to the CMB we look back in time to the end of the plasma era, at a redshift ~ 1000, when the universe was ~ 50000 times younger, ~ 1000 times hotter and ~ 10^9 times denser than today. The image of the CMB can be used to study the physical processes there, to infer what happened before, and also to study the background geometry of our Universe

    Cosmological Parameters from the 2003 flight of BOOMERANG

    Full text link
    We present the cosmological parameters from the CMB intensity and polarization power spectra of the 2003 Antarctic flight of the BOOMERANG telescope. The BOOMERANG data alone constrains the parameters of the Λ\LambdaCDM model remarkably well and is consistent with constraints from a multi-experiment combined CMB data set. We add LSS data from the 2dF and SDSS redshift surveys to the combined CMB data set and test several extensions to the standard model including: running of the spectral index, curvature, tensor modes, the effect of massive neutrinos, and an effective equation of state for dark energy. We also include an analysis of constraints to a model which allows a CDM isocurvature admixture.Comment: 18 pages, 10 figures, submitted to Ap
    • 

    corecore