1,256 research outputs found

    Stochastic Resonance in Two Dimensional Landau Ginzburg Equation

    Full text link
    We study the mechanism of stochastic resonance in a two dimensional Landau Ginzburg equation perturbed by a white noise. We shortly review how to renormalize the equation in order to avoid ultraviolet divergences. Next we show that the renormalization amplifies the effect of the small periodic perturbation in the system. We finally argue that stochastic resonance can be used to highlight the effect of renormalization in spatially extended system with a bistable equilibria

    Intermittency in Turbulence: computing the scaling exponents in shell models

    Get PDF
    We discuss a stochastic closure for the equation of motion satisfied by multi-scale correlation functions in the framework of shell models of turbulence. We give a systematic procedure to calculate the anomalous scaling exponents of structure functions by using the exact constraints imposed by the equation of motion. We present an explicit calculation for fifth order scaling exponent at varying the free parameter entering in the non-linear term of the model. The same method applied to the case of shell models for Kraichnan passive scalar provides a connection between the concept of zero-modes and time-dependent cascade processes.Comment: 12 pages, 5 eps figure

    A new scaling property of turbulent flows

    Full text link
    We discuss a possible theoretical interpretation of the self scaling property of turbulent flows (Extended Self Similarity). Our interpretation predicts that, even in cases when ESS is not observed, a generalized self scaling, must be observed. This prediction is checked on a number of laboratory experiments and direct numerical simulations.Comment: Plain Latex, 1 figure available upon request to [email protected]

    Universal statistics of non-linear energy transfer in turbulent models

    Full text link
    A class of shell models for turbulent energy transfer at varying the inter-shell separation, λ\lambda, is investigated. Intermittent corrections in the continuous limit of infinitely close shells (λ→1\lambda \rightarrow 1) have been measured. Although the model becomes, in this limit, non-intermittent, we found universal aspects of the velocity statistics which can be interpreted in the framework of log-poisson distributions, as proposed by She and Waymire (1995, Phys. Rev. Lett. 74, 262). We suggest that non-universal aspects of intermittency can be adsorbed in the parameters describing statistics and properties of the most singular structure. On the other hand, universal aspects can be found by looking at corrections to the monofractal scaling of the most singular structure. Connections with similar results reported in other shell models investigations and in real turbulent flows are discussed.Comment: 4 pages, 2 figures available upon request to [email protected]

    Double scaling and intermittency in shear dominated flows

    Full text link
    The Refined Kolmogorov Similarity Hypothesis is a valuable tool for the description of intermittency in isotropic conditions. For flows in presence of a substantial mean shear, the nature of intermittency changes since the process of energy transfer is affected by the turbulent kinetic energy production associated with the Reynolds stresses. In these conditions a new form of refined similarity law has been found able to describe the increased level of intermittency which characterizes shear dominated flows. Ideally a length scale associated with the mean shear separates the two ranges, i.e. the classical Kolmogorov-like inertial range, below, and the shear dominated range, above. However, the data analyzed in previous papers correspond to conditions where the two scaling regimes can only be observed individually. In the present letter we give evidence of the coexistence of the two regimes and support the conjecture that the statistical properties of the dissipation field are practically insensible to the mean shear. This allows for a theoretical prediction of the scaling exponents of structure functions in the shear dominated range based on the known intermittency corrections for isotropic flows. The prediction is found to closely match the available numerical and experimental data.Comment: 7 pages, 3 figures, submitted to PR

    Mean- Field Approximation and Extended Self-Similarity in Turbulence

    Full text link
    Recent experimental discovery of extended self-similarity (ESS) was one of the most interesting developments, enabling precise determination of the scaling exponents of fully developed turbulence. Here we show that the ESS is consistent with the Navier-Stokes equations, provided the pressure -gradient contributions are expressed in terms of velocity differences in the mean field approximation (Yakhot, Phys.Rev. E{\bf 63}, 026307, (2001)). A sufficient condition for extended self-similarity in a general dynamical systemComment: 8 pages, no figure

    Intermittency and scaling laws for wall bounded turbulence

    Get PDF
    Well defined scaling laws clearly appear in wall bounded turbulence, even very close to the wall, where a distinct violation of the refined Kolmogorov similarity hypothesis (RKSH) occurs together with the simultaneous persistence of scaling laws. A new form of RKSH for the wall region is here proposed in terms of the structure functions of order two which, in physical terms, confirms the prevailing role of the momentum transfer towards the wall in the near wall dynamics.Comment: 10 pages, 5 figure

    Intermittency and structure functions in channel flow turbulence

    Get PDF
    We present a study of intermittency in a turbulent channel flow. Scaling exponents of longitudinal streamwise structure functions, ζp/ζ3\zeta_p /\zeta_3, are used as quantitative indicators of intermittency. We find that, near the center of the channel the values of ζp/ζ3\zeta_p /\zeta_3 up to p=7p=7 are consistent with the assumption of homogeneous/isotropic turbulence. Moving towards the boundaries, we observe a growth of intermittency which appears to be related to an intensified presence of ordered vortical structures. In fact, the behaviour along the normal-to-wall direction of suitably normalized scaling exponents shows a remarkable correlation with the local strength of the Reynolds stress and with the \rms value of helicity density fluctuations. We argue that the clear transition in the nature of intermittency appearing in the region close to the wall, is related to a new length scale which becomes the relevant one for scaling in high shear flows.Comment: 4 pages, 6 eps figure

    Multiscale velocity correlation in turbulence: experiments, numerical simulations, synthetic signals

    Get PDF
    Multiscale correlation functions in high Reynolds number experimental turbulence, numerical simulations and synthetic signals are investigated. Fusion Rules predictions as they arise from multiplicative, almost uncorrelated, random processes for the energy cascade are tested. Leading and sub-leading contribution, in the inertial range, can be explained as arising from a multiplicative random process for the energy transfer mechanisms. Two different predictions for correlations involving dissipative observable are also briefly discussed
    • …
    corecore