1,305 research outputs found
Spin-dependent resonant tunneling through quantum-well states in magnetic metallic thin films
Quantum-well (QW) states in {\it nonmagnetic} metal layers contained in
magnetic multilayers are known to be important in spin-dependent transport, but
the role of QW states in {\it magnetic} layers remains elusive. Here we
identify the conditions and mechanisms for resonant tunneling through QW states
in magnetic layers and determine candidate structures. We report
first-principles calculations of spin-dependent transport in epitaxial
Fe/MgO/FeO/Fe/Cr and Co/MgO/Fe/Cr tunnel junctions. We demonstrate the
formation of sharp QW states in the Fe layer and show discrete conductance
jumps as the QW states enter the transport window with increasing bias. At
resonance, the current increases by one to two orders of magnitude. The
tunneling magnetoresistance ratio is several times larger than in simple spin
tunnel junctions and is positive (negative) for majority- (minority-) spin
resonances, with a large asymmetry between positive and negative biases. The
results can serve as the basis for novel spintronic devices.Comment: 4 figures in 5 eps file
Narrow structure in the coherent population trapping resonances in rubidium and Rayleigh scattering
The measurement of the coherent-population-trapping (CPT) resonances in
uncoated Rb vacuum cells has shown that the shape of the resonances is
different in different cells. In some cells the resonance has a complex shape -
a narrow Lorentzian structure, which is not power broadened, superimposed on
the power broadened CPT resonance. The results of the performed investigations
on the fluorescence angular distribution are in agreement with the assumption
that the narrow structure is a result of atom interaction with Rayleigh
scattering light. The results are interesting for indication of the vacuum
cleanness of the cells and building of magnetooptical sensors
Detailed studies of non-linear magneto-optical resonances at D1 excitation of Rb-85 and Rb-87 for partially resolved hyperfine F-levels
Experimental signals of non-linear magneto-optical resonances at D1
excitation of natural rubidium in a vapor cell have been obtained and described
with experimental accuracy by a detailed theoretical model based on the optical
Bloch equations. The D1 transition of rubidium is a challenging system to
analyze theoretically because it contains transitions that are only partially
resolved under Doppler broadening. The theoretical model took into account all
nearby transitions, the coherence properties of the exciting laser radiation,
and the mixing of magnetic sublevels in an external magnetic field and also
included averaging over the Doppler profile. Great care was taken to obtain
accurate experimental signals and avoid systematic errors. The experimental
signals were reproduced very well at each hyperfine transition and over a wide
range of laser power densities, beam diameters, and laser detunings from the
exact transition frequency. The bright resonance expected at the F_g=1 -->
F_e=2 transition of Rb-87 has been observed. A bright resonance was observed at
the F_g=2 --> F_e=3 transition of Rb-85, but displaced from the exact position
of the transition due to the influence of the nearby F_g=2 --> F_e=2
transition, which is a dark resonance whose contrast is almost two orders of
magnitude larger than the contrast of the bright resonance at the F_g=2 -->
F_e=3 transition. Even in this very delicate situation, the theoretical model
described in detail the experimental signals at different laser detunings.Comment: 11 pages, 9 figure
Ensemble v-representable ab-initio density functional calculation of energy and spin in atoms: atest of exchange-correlation approximations
The total energies and the spin states for atoms and their first ions with Z
= 1-86 are calculated within the the local spin-density approximation (LSDA)
and the generalized-gradient approximation (GGA) to the exchange-correlation
(xc) energy in density-functional theory. Atoms and ions for which the
ground-state density is not pure-state v-representable, are treated as ensemble
v- representable with fractional occupations of the Kohn-Sham system. A newly
developed algorithm which searches over ensemble v-representable densities [E.
Kraisler et al., Phys. Rev. A 80, 032115 (2009)] is employed in calculations.
It is found that for many atoms the ionization energies obtained with the GGA
are only modestly improved with respect to experimental data, as compared to
the LSDA. However, even in those groups of atoms where the improvement is
systematic, there remains a non-negligible difference with respect to the
experiment. The ab-initio electronic configuration in the Kohn-Sham reference
system does not always equal the configuration obtained from the spectroscopic
term within the independent-electron approximation. It was shown that use of
the latter configuration can prevent the energy-minimization process from
converging to the global minimum, e.g. in lanthanides. The spin values
calculated ab-initio fit the experiment for most atoms and are almost
unaffected by the choice of the xc-functional. Among the systems with
incorrectly obtained spin there exist some cases (e.g. V, Pt) for which the
result is found to be stable with respect to small variations in the
xc-approximation. These findings suggest a necessity for a significant
modification of the exchange-correlation functional, probably of a non-local
nature, to accurately describe such systems. PACS numbers: 31.15.
Rashba Effect at Magnetic Metal Surfaces
We give experimental and theoretical evidence of the Rashba effect at the
magnetic rare-earth metal surface Gd(0001). The Rashba effect is substantially
enhanced and the Rashba parameter changes its sign when a metal-oxide surface
layer is formed. The experimental observations are quantitatively described by
ab initio calculations that give a detailed account of the near-surface charge
density gradients causing the Rashba effect. Since the sign of the Rashba
splitting depends on the magnetization direction, the findings open up new
opportunities for the study of surface and interface magnetism.Comment: 4 Fig
Adiabatic and Non-Adiabatic Contributions to the Free Energy from the Electron-Phonon Interaction for Na, K, Al, and Pb
We calculate the adiabatic contributions to the free energy due to the
electron--phonon interaction at intermediate temperatures, for the elemental metals Na, K, Al, and Pb. Using our
previously published results for the nonadiabatic contributions we show that
the adiabatic contribution, which is proportional to at low
temperatures and goes as at high temperatures, dominates the
nonadiabatic contribution for temperatures above a cross--over temperature,
, which is between 0.5 and 0.8 , where is the melting
temperature of the metal. The nonadiabatic contribution falls as for
temperatures roughly above the average phonon frequency.Comment: Updated versio
Efficient nonlinear room-temperature spin injection from ferromagnets into semiconductors through a modified Schottky barrier
We suggest a consistent microscopic theory of spin injection from a
ferromagnet (FM) into a semiconductor (S). It describes tunneling and emission
of electrons through modified FM-S Schottky barrier with an ultrathin heavily
doped interfacial S layer . We calculate nonlinear spin-selective properties of
such a reverse-biased FM-S junction, its nonlinear I-V characteristic, current
saturation, and spin accumulation in S. We show that the spin polarization of
current, spin density, and penetration length increase with the total current
until saturation. We find conditions for most efficient spin injection, which
are opposite to the results of previous works, since the present theory
suggests using a lightly doped resistive semiconductor. It is shown that the
maximal spin polarizations of current and electrons (spin accumulation) can
approach 100% at room temperatures and low current density in a nondegenerate
high-resistance semiconductor.Comment: 7 pages, 2 figures; provides detailed comparison with earlier works
on spin injectio
Scattering polarization of hydrogen lines in the presence of turbulent electric fields
We study the broadband polarization of hydrogen lines produced by scattering
of radiation, in the presence of isotropic electric fields. In this paper, we
focus on two distinct problems: a) the possibility of detecting the presence of
turbulent electric fields by polarimetric methods, and b) the influence of such
fields on the polarization due to a macroscopic, deterministic magnetic field.
We found that isotropic electric fields decrease the degree of linear
polarization in the scattered radiation, with respect to the zero-field case.
On the other hand, a distribution of isotropic electric fields superimposed
onto a deterministic magnetic field can generate a significant increase of the
degree of magnetic-induced, net circular polarization. This phenomenon has
important implications for the diagnostics of magnetic fields in plasmas using
hydrogen lines, because of the ubiquitous presence of the Holtsmark,
microscopic electric field from neighbouring ions. In particular, previous
solar magnetographic studies of the Balmer lines of hydrogen may need to be
revised because they neglected the effect of turbulent electric fields on the
polarization signals. In this work, we give explicit results for the
Lyman-alpha and Balmer-alpha lines.Comment: 15 pages, 6 figure
Instability of the rhodium magnetic moment as origin of the metamagnetic phase transition in alpha-FeRh
Based on ab initio total energy calculations we show that two magnetic states
of rhodium atoms together with competing ferromagnetic and antiferromagnetic
exchange interactions are responsible for a temperature induced metamagnetic
phase transition, which experimentally is observed for stoichiometric
alpha-FeRh. A first-principle spin-based model allows to reproduce this
first-order metamagnetic transition by means of Monte Carlo simulations.
Further inclusion of spacial variation of exchange parameters leads to a
realistic description of the experimental magneto-volume effects in alpha-FeRh.Comment: 10 pages, 13 figures, accepted for publication in Phys. Rev.
Scattering polarization of hydrogen lines from electric-induced atomic alignment
We consider a gas of hydrogen atoms illuminated by a broadband, unpolarized
radiation with zero anisotropy. In the absence of external fields, the atomic
J-levels are thus isotropically populated. While this condition persists in the
presence of a magnetic field, we show instead that electric fields can induce
the alignment of those levels. We also show that this electric alignment cannot
occur in a two-term model of hydrogen (e.g., if only the Ly-alpha transition is
excited), or if the level populations are distributed according to Boltzmann's
law.Comment: 10 pages, 4 figures. Accepted by J.Phys.B: At.Mol.Opt.Phy
- …
