3,039 research outputs found
Symbol calculus and zeta--function regularized determinants
In this work, we use semigroup integral to evaluate zeta-function regularized
determinants. This is especially powerful for non--positive operators such as
the Dirac operator. In order to understand fully the quantum effective action
one should know not only the potential term but also the leading kinetic term.
In this purpose we use the Weyl type of symbol calculus to evaluate the
determinant as a derivative expansion. The technique is applied both to a
spin--0 bosonic operator and to the Dirac operator coupled to a scalar field.Comment: Added references, some typos corrected, published versio
Relativistic Lee Model on Riemannian Manifolds
We study the relativistic Lee model on static Riemannian manifolds. The model
is constructed nonperturbatively through its resolvent, which is based on the
so-called principal operator and the heat kernel techniques. It is shown that
making the principal operator well-defined dictates how to renormalize the
parameters of the model. The renormalization of the parameters are the same in
the light front coordinates as in the instant form. Moreover, the
renormalization of the model on Riemannian manifolds agrees with the flat case.
The asymptotic behavior of the renormalized principal operator in the large
number of bosons limit implies that the ground state energy is positive. In 2+1
dimensions, the model requires only a mass renormalization. We obtain rigorous
bounds on the ground state energy for the n-particle sector of 2+1 dimensional
model.Comment: 23 pages, added a new section, corrected typos and slightly different
titl
Characterization of conductive polyprrole coated wool yarns
Wool yarns were coated with conducting polypyrrole by chemical synthesis methods. Polymerization of pyrrole was carried out in the presence of wool yarn at various concentrations of the monomer and dopant anion. The changes in tensile, moisture absorption, and electrical properties of the yarn upon coating with conductive polypyrrole are presented. Coating the wool yarns with conductive polypyrrole resulted in higher tenacity, higher breaking strain, and lower initial modulus. The changes in tensile properties are attributed to the changes in surface morphology due to the coating and reinforcing effect of conductive polypyrrole. The thickness of the coating increased with the concentration of p-toluene sulfonic acid, which in turn caused a reduction in the moisture regain of the wool yarn. Reducing the synthesis temperature and replacing p-toluenesulfonic acid by anthraquinone sulfonic acid resulted in a large reduction in the resistance of the yarn. <br /
Biological Cell Discrimination Based on Their High Frequency Dielectropheretic Signatures at UHF Frequencies
2017 International Microwave Symposium paper entitled "Biological Cell Discrimination Based on Their High Frequency Dielectropheretic Signatures at UHF Frequencies". Honolulu June 4-9th 2017. Amended version: see additional notes.This version amends the wrong naming in the previous record: the conference is the IEEE IMS 2017, not 2018
Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project
The TT-PET collaboration is developing a PET scanner for small animals with
30 ps time-of-flight resolution and sub-millimetre 3D detection granularity.
The sensitive element of the scanner is a monolithic silicon pixel detector
based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for
the TT-PET was produced and tested in the laboratory and with minimum ionizing
particles. The electronics exhibit an equivalent noise charge below 600 e- RMS
and a pulse rise time of less than 2 ns, in accordance with the simulations.
The pixels with a capacitance of 0.8 pF were measured to have a detection
efficiency greater than 99% and, although in the absence of the
post-processing, a time resolution of approximately 200 ps
Recommended from our members
A monolithic ASIC demonstrator for the Thin Time-of-Flight PET scanner
Time-of-flight measurement is an important advancement in PET scanners to improve image reconstruction with a lower delivered radiation dose. This article describes the monolithic ASIC for the TT-PET project, a novel idea for a high-precision PET scanner for small animals. The chip uses a SiGe Bi-CMOS process for timing measurements, integrating a fully-depleted pixel matrix with a low-power BJT-based front-end per channel, integrated on the same 100 µm thick die. The target timing resolution of the scanner is 30 ps RMS for electrons from the conversion of 511 keV photons. The system will include 1.6 million channels across almost 2000 different chips. A full-featured demonstrator chip with a 3×10 matrix of 500×500 µm2 pixels was fabricated to validate each block. Its design and experimental results are presented here. © 2019 CERN
Recommended from our members
A 50 ps resolution monolithic active pixel sensor without internal gain in SiGe BiCMOS technology
A monolithic pixelated silicon detector designed for high time resolution has been produced in the SG13G2 130 nm SiGe BiCMOS technology of IHP. This proof-of-concept chip contains hexagonal pixels of 65 µm and 130 µm side. The SiGe front-end electronics implemented provides an equivalent noise charge of 90 and 160 e- for a pixel capacitance of 70 and 220 fF, respectively, and a total time walk of less than 1 ns. Lab measurements with a 90Sr source show a time resolution of the order of 50 ps. This result is competitive with silicon technologies that integrate an avalanche gain mechanism. © 2019 CERN
Non-conformal Hydrodynamics in Einstein-dilaton Theory
In the Einestein-dilaton theory with a Liouville potential parameterized by
, we find a Schwarzschild-type black hole solution. This black hole
solution, whose asymptotic geometry is described by the warped metric, is
thermodynamically stable only for . Applying the gauge/gravity
duality, we find that the dual gauge theory represents a non-conformal thermal
system with the equation of state depending on . After turning on the
bulk vector fluctuations with and without a dilaton coupling, we calculate the
charge diffusion constant, which indicates that the life time of the quasi
normal mode decreases with . Interestingly, the vector fluctuation with
the dilaton coupling shows that the DC conductivity increases with temperature,
a feature commonly found in electrolytes.Comment: 27 pages and 2 figures, published in JHE
Isometric Embeddings and Noncommutative Branes in Homogeneous Gravitational Waves
We characterize the worldvolume theories on symmetric D-branes in a
six-dimensional Cahen-Wallach pp-wave supported by a constant Neveu-Schwarz
three-form flux. We find a class of flat noncommutative euclidean D3-branes
analogous to branes in a constant magnetic field, as well as curved
noncommutative lorentzian D3-branes analogous to branes in an electric
background. In the former case the noncommutative field theory on the branes is
constructed from first principles, related to dynamics of fuzzy spheres in the
worldvolumes, and used to analyse the flat space limits of the string theory.
The worldvolume theories on all other symmetric branes in the background are
local field theories. The physical origins of all these theories are described
through the interplay between isometric embeddings of branes in the spacetime
and the Penrose-Gueven limit of AdS3 x S3 with Neveu-Schwarz three-form flux.
The noncommutative field theory of a non-symmetric spacetime-filling D-brane is
also constructed, giving a spatially varying but time-independent
noncommutativity analogous to that of the Dolan-Nappi model.Comment: 52 pages; v2: References adde
- …