292 research outputs found

    Temperature response of denitrification and anammox reveals the adaptation of microbial communities to in situ temperatures in permeable marine sediments that span 50° in latitude

    Get PDF
    Despite decades of research on the physiology and biochemistry of nitrate/nitrite-respiring microorganisms, little is known regarding their metabolic response to temperature, especially under in situ conditions. The temperature regulation of microbial communities that mediate anammox and denitrification was investigated in near shore permeable sediments at polar, temperate, and subtropical sites with annual mean temperatures ranging from -5 to 23 degrees C. Total N-2 production rates were determined using the isotope pairing technique in intact core incubations under diffusive and simulated advection conditions and ranged from 2 to 359 mu mol N m(-2) d(-1). For the majority of sites studied, N-2 removal was 2-7 times more rapid under simulated advective flow conditions. Anammox comprised 6-14% of total N-2 production at temperate and polar sites and was not detected at the subtropical site. Potential rates of denitrification and anammox were determined in anaerobic slurries in a temperature gradient block incubator across a temperature range of -1 degrees C to 42 degrees C. The highest optimum temperature (T-opt) for denitrification was 36 degrees C and was observed in subtropical sediments, while the lowest T-opt of 21 degrees C was observed at the polar site. Seasonal variation in the T-opt was observed at the temperate site with values of 26 and 34 degrees C in winter and summer, respectively. The T-opt values for anammox were 9 and 26 degrees C at the polar and temperate sites, respectively. The results demonstrate adaptation of denitrifying communities to in situ temperatures in permeable marine sediments across a wide range of temperatures, whereas marine anammox bacteria may be predominately psychrophilic to psychrotolerant. The adaptation of microbial communities to in situ temperatures suggests that the relationship between temperature and rates of N removal is highly dependent on community structure

    Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second

    Get PDF
    Lipid deposition can be assessed with combined intravascular photoacoustic/ultrasound (IVPA/US) imaging. To date, the clinical translation of IVPA/US imaging has been stalled by a low imaging speed and catheter complexity. In this paper, we demonstrate imaging of lipid targets in swine coronary arteries in vivo, at a clinically useful frame rate of 20 s−1. We confirmed image contrast for atherosclerotic plaque in human samples ex vivo. The system is on a mobile platform and provides real-time data visualization during acquisition. We achieved an IVPA signal-to-noise ratio of 20 dB. These data show that clinical translation of IVPA is possible in principle

    In-vitro and in-vivo imaging of coronary artery stents with Heartbeat OCT

    Get PDF
    To quantify the impact of cardiac motion on stent length measurements with Optical Coherence Tomography (OCT) and to demonstrate in vivo OCT imaging of implanted stents, without motion artefacts. The study consists of: clinical data evaluation, simulations and in vivo tests. A comparison between OCT-measured and nominal stent lengths in 101 clinically acquired pullbacks was carried out, followed by a simulation of the effect of cardiac motion on stent length measurements, experimentally and computationally. Both a commercial system and a custom OCT, capable of completing a pullback between two consecutive ventricular contractions, were employed. A 13 mm long stent was implanted in the left anterior descending branch of two atherosclerotic swine and imaged with both OCT systems. The analysis of the clinical OCT images yielded an average difference of 1.1 ± 1.6 mm, with a maximum difference of 7.8 mm and the simulations replicated the statistics observed in clinical data. Imaging with the custom OCT, yielded an RMS error of 0.14 mm at 60 BPM with the start of the acquisition synchronized to the cardiac cycle. In vivo imaging with conventional OCT yielded a deviation of 1.2 mm, relative to the length measured on ex-vivo micro-CT, while the length measured in the pullback acquired by the custom OCT differed by 0.20 mm. We demonstrated motion artefact-free OCT-imaging of implanted stents, using ECG triggering and a rapid pullback
    • 

    corecore