511 research outputs found

    The ZEUS Forward Plug Calorimeter with Lead-Scintillator Plates and WLS Fiber Readout

    Get PDF
    A Forward Plug Calorimeter (FPC) for the ZEUS detector at HERA has been built as a shashlik lead-scintillator calorimeter with wave length shifter fiber readout. Before installation it was tested and calibrated using the X5 test beam facility of the SPS accelerator at CERN. Electron, muon and pion beams in the momentum range of 10 to 100 GeV/c were used. Results of these measurements are presented as well as a calibration monitoring system based on a 60^{60}Co source.Comment: 38 pages (Latex); 26 figures (ps

    The role of nano-perovskite in the negligible thorium release in seawater from Greek bauxite residue (red mud)

    Get PDF
    We present new data about the chemical and structural characteristics of bauxite residue (BR) from Greek Al industry, using a combination of microscopic, analytical, and spectroscopic techniques. SEM-EDS indicated a homogeneous dominant “Al-Fe-Ca-Ti-Si-Na-Cr matrix”, appearing at the microscale. The bulk chemical analyses showed considerable levels of Th (111 Όg g−1), along with minor U (15 Όg g−1), which are responsible for radioactivity (355 and 133 Bq kg−1 for 232Th and 238U, respectively) with a total dose rate of 295 nGy h−1. Leaching experiments, in conjunction with SF-ICP-MS, using Mediterranean seawater from Greece, indicated significant release of V, depending on S/L ratio, and negligible release of Th at least after 12 months leaching. STEM-EDS/EELS & HR-STEM-HAADF study of the leached BR at the nanoscale revealed that the significant immobility of Th4+ is due to its incorporation into an insoluble perovskite-type phase with major composition of Ca0.8Na0.2TiO3 and crystallites observed in nanoscale. The Th LIII-edge EXAFS spectra demonstrated that Th4+ ions, which are hosted in this novel nano-perovskite of BR, occupy Ca2+ sites, rather than Ti4+ sites. That is most likely the reason of no Th release in Mediterranean seawater

    Combined EXAFS and ab initio study of copper complex geometries adsorbed on natural illite

    Get PDF
    The adsorption of copper on the 2:1 clay mineral illite (0.4 to 20 ÎŒm in size) was studied using a combination of extended X-ray adsorption fine structure (EXAFS) and hybrid-Density Functional Theory (DFT) modelling. The study evaluates the effect of varying pH and copper concentration on the mechanisms of copper adsorption in solutions at background electrolyte concentration typical of natural surface continental freshwaters in granitic environments. The EXAFS spectra revealed both the elongated square pyramidal and Jahn-Teller octahedral coordinated copper clusters as feasible with the former providing better fits using spertiniite (crystalline copper hydroxide) as model compound. Additionally, ab initio calculations also predicted the square pyramidal geometry to be more stable. Copper ions have four Oeq at an average distance of 1.95(1) Å and two independent Oax at average distances of 2.32(16) Å and 3.06(9) Å, with the latter decreasing to 2.97(2) Å as copper concentration and pH are increased. This may reveal different mechanism by which copper adsorbs on illite, as a weakly bound complex at low pH likely at exchange and edge sites and changing towards more strongly bound complexes at high affinity edge sites at higher pH and copper loads. Above 1% Cu model fits suggest formation of copper oligomers with average Cu-Cu distance of 3.10(2) Å. These occur at pH > 6, where the correlation between Cu-Cu and Al-Al distances in the illite edge surfaces supports the formation of surface precipitates
    • 

    corecore