33 research outputs found

    Modularity and 4D-2D spectral equivalences for large-N gauge theories with adjoint matter

    Get PDF
    In recent work, we demonstrated that the confined-phase spectrum of non-supersymmetric pure Yang-Mills theory coincides with the spectrum of the chiral sector of a two-dimensional conformal field theory in the large-NN limit. This was done within the tractable setting in which the gauge theory is compactified on a three-sphere whose radius is small compared to the strong length scale. In this paper, we generalize these observations by demonstrating that similar results continue to hold even when massless adjoint matter fields are introduced. These results hold for both thermal and (−1)F(-1)^F-twisted partition functions, and collectively suggest that the spectra of large-NN confining gauge theories are organized by the symmetries of two-dimensional conformal field theories.Comment: 51 pages, LaTeX, 3 figure

    The Chern-Simons diffusion rate in strongly coupled N=4 SYM plasma in an external magnetic field

    Full text link
    We calculate the Chern-Simons diffusion rate in a strongly coupled N=4 SUSY Yang-Mills plasma in the presence of a constant external U(1)RU(1)_R magnetic flux via the holographic correspondence. Due to the strong interactions between the charged fields and non-Abelian gauge fields, the external Abelian magnetic field affects the thermal Yang-Mills dynamics and increases the diffusion rate, regardless of its strength. We obtain the analytic results for the Chern-Simons diffusion rate both in the weak and strong magnetic field limits. In the latter limit, we show that the diffusion rate scales as B×T2B\times T^2 and this can be understood as a result of a dynamical dimensional reduction.Comment: 10 pages, 1 figure, typos corrected, comments adde

    Conformal anomaly as a source of soft photons in heavy ion collisions

    Get PDF
    We introduce a novel photon production mechanism stemming from the conformal anomaly of QCDxQED and the existence of strong (electro)magnetic fields in heavy ion collisions. Using the hydrodynamical description of the bulk modes of QCD plasma, we show that this mechanism leads to the photon production yield that is comparable to the yield from conventional sources. This mechanism also provides a significant positive contribution to the azimuthal anisotropy of photons, v2v_2, as well as to the radial "flow". We compare our results to the data from the PHENIX Collaboration.Comment: 5 pages, 3 figures; version accepted to Phys. Rev. Let

    A taxonomy of supply chain innovations

    Get PDF
    In this paper, a taxonomy of supply chain and logistics innovations was developed and presented. The taxonomy was based on an extensive literature survey of both theoretical research and case studies. The primary goals are to provide guidelines for choosing the most appropriate innovations for a company, and help companies in positioning themselves in the supply of chain innovations landscape. To this end, the three dimensions of supply chain innovations, namely the goals, supply chain attributes, and innovation attributes were identified and classified. The taxonomy allows for the efficient representation of critical supply chain innovations information, and serves the mentioned goals, which are fundamental to companies in a multitude of industries

    Holographic Pomeron and the Schwinger Mechanism

    Get PDF
    We revisit the problem of dipole-dipole scattering via exchanges of soft Pomerons in the context of holographic QCD. We show that a single closed string exchange contribution to the eikonalized dipole-dipole scattering amplitude yields a Regge behavior of the elastic amplitude; the corresponding slope and intercept are different from previous results obtained by a variational analysis of semi-classical surfaces. We provide a physical interpretation of the semi-classical worldsheets driving the Regge behavior for (-t)>0 in terms of worldsheet instantons. The latter describe the Schwinger mechanism for string pair creation by an electric field, where the longitudinal electric field E_L=\sigma_T tanh(\chi/2) at the origin of this non-perturbative mechanism is induced by the relative rapidity {\chi} of the scattering dipoles. Our analysis naturally explains the diffusion in the impact parameter space encoded in the Pomeron exchange; in our picture, it is due to the Unruh temperature of accelerated strings under the electric field. We also argue for the existence of a "micro-fireball" in the middle of the transverse space due to the soft Pomeron exchange, which may be at the origin of the thermal character of multiparticle production in ep/pp collisions. After summing over uncorrelated multi-Pomeron exchanges, we find that the total dipole-dipole cross section obeys the Froissart unitarity bound.Comment: 17 pages, 4 figures, version 2: minor typos corrected, references adde

    Self-consistent crystalline condensate in chiral Gross-Neveu and Bogoliubov-de Gennes systems

    Full text link
    We derive a new exact self-consistent crystalline condensate in the 1+1 dimensional chiral Gross-Neveu model. This also yields a new exact crystalline solution for the one dimensional Bogoliubov-de Gennes equations and the Eilenberger equation of semiclassical superconductivity. We show that the functional gap equation can be reduced to a solvable nonlinear equation, and discuss implications for the temperature-chemical potential phase diagram.Comment: 5 pages, 5 figures; v2 minor corrections, version for PR

    A Gauge-Gravity Relation in the One-loop Effective Action

    Full text link
    We identify an unusual new gauge-gravity relation: the one-loop effective action for a massive spinor in 2n dimensional AdS space is expressed in terms of precisely the same function [a certain multiple gamma function] as the one-loop effective action for a massive charged scalar in 4n dimensions in a maximally symmetric background electromagnetic field [one for which the eigenvalues of F_{\mu\nu} are maximally degenerate, corresponding in 4 dimensions to a self-dual field, equivalently to a field of definite helicity], subject to the identification F^2 \Lambda, where \Lambda is the gravitational curvature. Since these effective actions generate the low energy limit of all one-loop multi-leg graviton or gauge amplitudes, this implies a nontrivial gauge-gravity relation at the non-perturbative level and at the amplitude level.Comment: 6 page

    Inhomogeneous Condensates in the Thermodynamics of the Chiral NJL_2 model

    Full text link
    We analyze the thermodynamical properties, at finite density and nonzero temperature, of the (1+1)-dimensional chiral Gross-Neveu model (the NJL_2 model), using the exact inhomogeneous (crystalline) condensate solutions to the gap equation. The continuous chiral symmetry of the model plays a crucial role, and the thermodynamics leads to a broken phase with a periodic spiral condensate, the "chiral spiral", as a thermodynamically preferred limit of the more general "twisted kink crystal" solution of the gap equation. This situation should be contrasted with the Gross-Neveu model, which has a discrete chiral symmetry, and for which the phase diagram has a crystalline phase with a periodic kink crystal. We use a combination of analytic, numerical and Ginzburg-Landau techniques to study various parts of the phase diagram.Comment: 28 pages, 13 figure

    Gross-Neveu Models, Nonlinear Dirac Equations, Surfaces and Strings

    Full text link
    Recent studies of the thermodynamic phase diagrams of the Gross-Neveu model (GN2), and its chiral cousin, the NJL2 model, have shown that there are phases with inhomogeneous crystalline condensates. These (static) condensates can be found analytically because the relevant Hartree-Fock and gap equations can be reduced to the nonlinear Schr\"odinger equation, whose deformations are governed by the mKdV and AKNS integrable hierarchies, respectively. Recently, Thies et al have shown that time-dependent Hartree-Fock solutions describing baryon scattering in the massless GN2 model satisfy the Sinh-Gordon equation, and can be mapped directly to classical string solutions in AdS3. Here we propose a geometric perspective for this result, based on the generalized Weierstrass spinor representation for the embedding of 2d surfaces into 3d spaces, which explains why these well-known integrable systems underlie these various Gross-Neveu gap equations, and why there should be a connection to classical string theory solutions. This geometric viewpoint may be useful for higher dimensional models, where the relevant integrable hierarchies include the Davey-Stewartson and Novikov-Veselov systems.Comment: 27 pages, 1 figur

    A Twisted Kink Crystal in the Chiral Gross-Neveu model

    Full text link
    We present the detailed properties of a self-consistent crystalline chiral condensate in the massless chiral Gross-Neveu model. We show that a suitable ansatz for the Gorkov resolvent reduces the functional gap equation, for the inhomogeneous condensate, to a nonlinear Schr\"odinger equation, which is exactly soluble. The general crystalline solution includes as special cases all previously known real and complex condensate solutions to the gap equation. Furthermore, the associated Bogoliubov-de Gennes equation is also soluble with this inhomogeneous chiral condensate, and the exact spectral properties are derived. We find an all-orders expansion of the Ginzburg-Landau effective Lagrangian and show how the gap equation is solved order-by-order.Comment: 28 pages, 13 figs; v2: new appendix on Eilenberger eq and refs; version in PR
    corecore