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1 Introduction

In the large-N limit, QCD and other 4D confining gauge theories become free in terms of

their physical degrees of freedom [1, 2]. The first step towards a solution of a confining

large-N theory entails determining which particular free theory it becomes at large N by

specifying the spectrum of particle masses. This amounts to determining the two-point

functions of the theory. Once this is done, one would then want to characterize the large-

N limit of the connected correlation functions of three or more operators. Progress towards

these goals has been made for situations in which these gauge theories are supersymmetric;

for a review see ref. [3]. Unfortunately, there has been much less progress for more realistic

theories that lack supersymmetry. Indeed, for non-supersymmetric confining 4D gauge

theories, such as QCD, even the first step of determining the large-N particle mass spectrum

has thus far been beyond reach.

In recent work [4], we focused on the case of pure non-supersymmetric Yang-Mills (YM)

theory, and within an especially tractable setting we demonstrated that its confined-phase

spectrum coincides with the spectrum of the chiral sector of a two-dimensional conformal

field theory (CFT) in the large-N limit. This tractable setting is one in which the theory

is compactified on a round three-sphere whose radius is parametrically small compared to

the strong length scale. The theory is also considered at finite temperature T ∼ β−1.

In this paper, we shall generalize the analysis of ref. [4] to the broader case of

asymptotically-free gauge theories with nf massless Majorana adjoint fermions and ns
massless (conformally-coupled) adjoint scalars. Just as in ref. [4], we shall consider this

theory at finite temperature T ∼ β−1 and compactified on a round three-sphere S3 with

radius R, and we shall work in the RΛ → 0 limit, where Λ is the strong scale associated

with the gauge theory. This limit is particularly attractive because as RΛ becomes small,

the ’t Hooft coupling λ at the scale R approaches zero. As a result, these theories can

be solved in the RΛ → 0 limit. Moreover, at large N , adjoint-matter gauge theories can

be shown to be in a confining phase even when RΛ → 0. Here confinement is defined

to be associated with an unbroken center symmetry and a free energy that scales as N0,

as discussed in ref. [5]. In particular, there are known closed-form expressions for the

large-N confining-phase thermal partition functions when λ = 0 (see, e.g., refs. [6–8]). A

conjectured phase diagram for this class of theories is sketched in figure 1.

Understanding the symmetry structure of the spectrum in the solvable RΛ→ 0 corner

of the phase diagram of adjoint-matter confining gauge theories is likely to be a valuable

and perhaps necessary step toward understanding the structure of the spectrum of confining

gauge theories for more general RΛ. Understanding this structure is therefore the main

thrust of this paper. Quite remarkably, we find that the tantalizing results of ref. [4]

generalize cleanly to gauge theories with massless adjoint matter fields. Specifically, we

find that the confined-phase spectra of large-N four-dimensional quantum field theories

(QFTs) on S3 × S1 are identical to the spectra of certain two-dimensional (2D) CFTs

in the regime described above. More precisely, at large N , the confined-phase S3 × S1

partition functions Z4D coincide with certain chiral torus partition functions Z2D of 2D

CFTs, so that we obtain a relation of the form

Z4D(τ) = Z2D(τ). (1.1)

– 2 –



J
H
E
P
0
6
(
2
0
1
6
)
1
4
8

Confined,

no χ-SB

Deconfined,
no χ-SB

Confined,

χ-SB

β/R ∼ 1/(Λ R)

0 (1)
Λ R

(1)

β/R

Figure 1. A conjectured phase diagram for large-N gauge theories compactified on S3
R × S1

β . The

dashed red curve indicates a phase transition to the deconfined phase. At small RΛ, it can be

shown that the deconfinement transition takes place when RΛ ∼ 1. For theories that have a mass

gap ∼ Λ in the RΛ � 1 limit, one would expect a deconfinement transition at β ∼ 1/Λ. The

curve sketched in the diagram is the simplest interpolation between these two limiting behaviors.

The dashed green line indicates a possible chiral symmetry-breaking (χ-SB) phase transition. As

emphasized in ref. [9], these phase transitions may or may not be present, depending on the matter

content and the boundary conditions for the fermions. The blue line on the left edge indicates the

region for which we find a 2D description of the 4D theory.

In writing this result, we have taken advantage of the fact that the functions Z4D are

meromorphic functions of β/R in order to analytically continue β/R into the complex

plane, setting β/R = 2πiτ where τ is generally complex. Here Im τ = β/(2πR) = CS1/CS3

is the ratio of the circumferences of S1 and S3. On the 2D side of the relation, Im τ is

the ratio of the cycles of a torus, as usual, while Re τ controls the momentum on the

spatial cycle. The physical meaning of Re τ on the 4D side of the relation is in general

less evident. For 4D theories with fermions, we will see that the modular T -transformation

τ → τ + 1 (which generates non-zero integer values of Re τ) has the effect of flipping the

fermion boundary conditions on S1 from periodic to anti-periodic. We leave the interesting

and important challenge of understanding the physical meaning of generic points along the

(Re τ)-direction to future work.

The result in eq. (1.1) is interesting from the perspective of the general goal of un-

derstanding the structure of the large-N spectrum. Recall that the definition of a generic

free QFT relies on a large set of parameters whose number scales with the number of dis-

tinct single-particle excitations of the QFT. However, the number of parameters is reduced

in the presence of symmetries. The spectrum of a given large-N confining gauge theory

consists of an infinite number of single-particle excitations, even in the RΛ→ 0 limit, but

such theories have very few adjustable parameters. For instance, pure SU(N) Yang-Mills

theory has no dimensionless parameters at all in the large-N limit, both in the RΛ → ∞
limit and in the RΛ → 0 limit. It is therefore tempting to wonder whether the large-

– 3 –
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N spectrum is controlled by some emergent spectrum-generating symmetry. Of course,

even if such symmetries exist at large N , presumably they are broken at finite N , and

they may not be apparent in a Lagrangian description of the theory based on the micro-

scopic quark and gluon fields. It is not currently clear how to explore the structure of the

confined-phase spectrum for generic RΛ, but in the RΛ → 0 limit the problem simplifies

dramatically since the spectrum in that limit is known. What our result in eq. (1.1) sug-

gests is that the RΛ→ 0 spectrum is controlled by the symmetries of a 2D CFT. Moreover,

such 2D CFTs are known to have infinite-dimensional symmetries, because their spectrum-

generating symmetry algebras always include at least one copy of the infinite-dimensional

Virasoro symmetry. Our observations thus suggest that the large-N confined-phase spectra

of 4D gauge theories are controlled by infinite-dimensional spectrum-generating algebras

which include at least the Virasoro algebra, at least in the small RΛ limit. It would be

very interesting to understand to what extent this generalizes for generic RΛ.

String theory provides additional reasons to suspect a connection between 2D CFTs

and 4D gauge theories. Large-N confining gauge theories are believed to be describable as

free string theories, and free string theories have a world-sheet description as 2D CFTs.

However, as we shall discuss in the conclusions, our results do not fit easily with such

string worldsheet-based expectations. Understanding the string-theoretic underpinnings of

our results therefore remains an exciting open question.

A relation such as that in eq. (1.1) may seem surprising for many reasons. At the

most basic level, it may seem implausible that the partition functions of QFTs defined in

different numbers of spacetime dimensions could possibly be identical. Indeed, the result in

eq. (1.1) might initially appear to be inconsistent with the properties of typical 4D QFTs,

because such theories typically exhibit the asymptotic behavior

lim
β→0

Zgeneric
4D (β) ∼ e−

σ4R
3

β3 . (1.2)

By contrast, for a 2D CFT one instead expects

lim
β→0

Z2D(β) ∼ e−
σ2R
β . (1.3)

This latter behavior can be understood from the observation that the partition functions of

2D CFTs have simple properties under modular transformations acting on τ , and thus are

expected to be expressible as combinations of modular forms and Jacobi forms which are

functions of τ . The modular properties of such functions then lead to the limiting behavior

in eq. (1.3).

In general, for 4D theories we would expect to observe the behavior in eq. (1.2), and

so we would not expect 4D QFT partition functions to be expressible as finite products

of modular forms. However, large-N confining gauge theories are very special 4D QFTs.

As discussed in refs. [9, 10], there exists numerical evidence that the large-N confined-

phase partition functions discussed above scale as in eq. (1.3) for small β, rather than as in

eq. (1.2) — as long as the |τ | → 0 limit is taken before the arg τ → π/2 limit, i.e., as long

as β ∼ iτ → 0 along a contour that is slightly off the real-β axis. The ordering of limits

can be important due to Hagedorn singularities.
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As we shall demonstrate in this paper, the results obtained in refs. [9, 10] are possi-

ble because the large-N confined-phase partition functions of gauge theories on S3 × S1

can indeed be expressed as combinations of modular and Jacobi forms. This surprising

“modularity” is thus an important ingredient governing the spectra of such theories, and

enables these 4D partition functions to coincide with the chiral torus partition functions

of 2D CFTs, as claimed in eq. (1.1). Thus, in this sense, the results in this paper both

confirm and extend those of refs. [4, 9, 10]. Furthermore, as we shall see, they even al-

low us to extract some of the properties of the 2D CFTs to which our 4D gauge theories

are isospectral.

This paper is organized as follows. In section 2 we begin by discussing the calculation

of the large-N partition functions of the 4D theories which are our main focus in this paper.

Then, in section 3 we discuss the modularity properties of these 4D partition functions. In

section 4 we discuss the various physical features that flow directly from this modularity

and demonstrate that the large-N 4D gauge theory partition functions can be written as the

partition functions of 2D CFTs. In section 5 we explore some properties of these 2D CFTs.

Finally, in section 6 we conclude by listing a number of open questions and discussing how

our results relate to previous observations in the literature. Several appendices are also

included which define the notation and conventions that we shall be using throughout this

paper and which provide further details concerning some of the results derived.

2 Calculation of large-N partition functions

In this section we review the construction of large-N confining-phase partition functions

on S3 × S1.

2.1 Large-N limit and compactification on S3 × S1

We work in the ’t Hooft large-N limit, with N → ∞ while all other parameters are held

fixed. As usual, we assume that the strong scale ’t Hooft coupling λ = g2N at the UV

cutoff scale µUV is held fixed as N → ∞, and we also assume that the strong scale Λ,

the sphere size R, the temperature β, and µuv are independent of N . We also assume

that matter content, which is parametrized by ns and nf , is fixed as N → ∞. With

these assumptions, planar Feynman diagrams give the dominant contribution in the large-

N limit, and the standard N -counting rules follow. As is common in studies of large-N

theories, we focus on the U(N) theories when discussing the N → ∞ limit. Of course,

the overall U(1) completely decouples for any N ≥ 1 in adjoint-matter theories, even at

finite ’t Hooft coupling, so its contribution to the partition function factorizes and could

easily be taken into account if one wanted to write down results for the N → ∞ limit of

SU(N) theories.

When RΛ→ 0, the asymptotically-free gauge theories we consider become essentially

free. A quick way to see this is that if RΛ� 1, the relevant scale for the ’t Hooft coupling

becomes 1/R, and λ(1/R) → 0 thanks to asymptotic freedom. We work to leading order

in the small RΛ → 0 limit, which amounts to taking λ = 0. The phase diagram of the

theory as a function of RΛ and β/R is sketched in figure 1.

– 5 –
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2.2 Derivation of thermal and (−1)F -twisted partition functions

We now review the computation of the thermal and (−1)F -twisted partition functions for

large-N gauge theories with adjoint matter on S3 × S1. These partition functions are

respectively defined as

Z(β) = Tr e−βH

Z̃(β) = Tr (−1)F e−βH . (2.1)

At large N , the computation of Z(β) and Z̃(β) can be organized into three steps:

1. Construct partition functions counting single-particle excitations of the gluon and

matter fields. This comprises the set of operators that can be inserted into single-

and multi-trace operators in the full theory.

2. Construct the partition function for the physical single-particle excitations of the

large-N gauge theory. This corresponds to specifying the energies and degeneracies

of all single-trace operators in the theory.

3. Construct the full grand-canonical partition functions Z(β) and Z̃(β), which count

all of the physical multi-particle excitations as well as the single-particle excitations.

In what follows we briefly summarize each of these steps, with an emphasis on the issues

which will be important for the rest of our analysis.

First, we discuss the partition functions for the excitations of the fundamental gauge

and matter fields. In the weakly-coupled RΛ � 1 limit, the microscopic fields of the

gauge theory — the gluon and matter fields — can be represented as infinite collections

of harmonic oscillators, all with non-vanishing oscillation frequencies set in units of 1/R.

There are three types of harmonic oscillator fields that we can include, associated with

microscopic scalar, fermion, and massless vector fields. The energies and degeneracies of

the operators associated to these fundamental fields are counted by the so-called ‘letter’

partition functions zs, zf , zv respectively, which can be written as

zs(q) =
q1/2 + q−1/2

(q−1/2 − q1/2)3
=

q + q2

(1− q)3

zf (q) =
4

(q−1/2 − q1/2)3
= 4

q3/2

(1− q)3

1− zv(q) =
(q3/2 + q−3/2)− 3(q1/2 + q−1/2)

(q−1/2 − q1/2)3
=

(1 + q3)− 3(q + q2)

(1− q)3
(2.2)

where we have defined q ≡ exp
(
− β
R

)
. Thus zs, zf , and zv are real-analytic functions of

β, and the states of the adjoint-matter gauge theory are built from combinations of these

microscopic fields.

For what follows, it will be important to remember where these expressions come from.

As discussed, e.g., in ref. [6], a free conformally-coupled massless scalar field on S3
R×S1

β has

– 6 –
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single-particle excitation energies that can be written as En = (n + 1)/R, n = 0, 1, 2, . . .,

with degeneracies dn = (n+ 1)2. The associated single-particle partition function is

zs(β) =
∞∑
n=0

(n+ 1)2e−β(n+1)/Re−βε/R

= qε
q−1/2 + q1/2

(q−1/2 − q1/2)3
(2.3)

where ε parametrizes the a priori arbitrary choice of vacuum energy. Very similar calcula-

tions yield zf and zv.

We now make the algebraic observation that if (and only if) we set ε = 0, the single-

letter partition functions 1 − zv(q), zf (q), zs(q) transform to −[1 − zv(q)],−zf (q),−zs(q)
under the formal ‘T-reflection’ operation β → −β (i.e., q → 1/q and q1/2 → q−1/2).

Indeed, this observation was a key step in the demonstration of a more subtle temperature-

reflection symmetry of Z(β) and Z̃(β) in ref. [11], under which these grand-canonical

partition functions transform into themselves up to a temperature-independent phase. This

choice for ε was made in writing eq. (2.2), and the single-letter partition functions in

eq. (2.2) are written in two different ways to emphasize their T-reflection properties. These

will be important in our analysis of modularity properties of Z and Z̃ below.

Now let us consider the physical single-particle excitations. The spectral problem in

the weakly-coupled gauge theory remains somewhat non-trivial due to the color Gauss-law

constraint, which is present for any non-zero λ, no matter how small. The Gauss law implies

that the physical states are created by single and multi-color-trace operators hitting the

vacuum. This must be taken into account if we wish the λ = 0 theory to describe a limit

of a theory with λ→ 0+. Thus, in order to compute the spectrum of a non-Abelian gauge

theory, we must count the energies and degeneracies of collections of harmonic oscillators

drawn from zs, zf , zv, subject to the color-singlet constraint.

At large N and in the confining phase, the single-particle states are single-trace states

while multi-trace states are multi-particle states. Taking the ’t Hooft large-N limit de-

fined above sharpens the distinction between single-trace and multi-trace operators and

dramatically simplifies the counting problem yielding the partition function. If we were to

work in a non-’t Hooft large-N limit and were to consider the contributions of states with

energies that scale with N , then there would be algebraic relations between states created

by single-trace chains of N operators and multi-trace operators. The counting problem

would then be difficult. Importantly, our choice that the cutoff µuv scales as µuv ∼ N0

excises this subtlety from our analysis, and means that we only need to consider states

with energies ∼ N0.

The physical single-particle partition functions are just the single-trace partition func-

tions, which turn out to be [5, 7, 8]

ZST = −
∞∑
k=1

ϕ(k)

k
log
[
1− zv(qk) + (−1)knfzf (qk)− nszs(qk)

]
Z̃ST = −

∞∑
k=1

ϕ(k)

k
log
[
1− zv(qk) + nfzf (qk)− nszs(qk)

]
. (2.4)

– 7 –
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Here ϕ(k) is the Euler totient function, which counts the integers smaller than k which are

coprime to k. These expressions are built to correctly encode the cyclic permutation prop-

erties of single-trace operators, with attention to the combinatorics of repeated operators.

We can now write down the full grand-canonical partition functions. At large N the

single-trace states do not interact, and the space of multi-trace states is a Fock space built

out of single-trace states. As a result, the grand-canonical and single-particle partition

functions are related through the plethystic exponential, Z(q) = exp
[∑∞

n=1
1
nZST(qn)

]
.

One can show that the grand-canonical partition functions take an even simpler form than

the single-trace partitition functions [5, 7, 8]:

Z(q;ns, nf ) = Tr e−βH =
∞∏
n=1

1

1− zv(qn) + (−1)nnf zf (qn)− ns zs(qn)

Z̃(q;ns, nf ) = Tr (−1)F e−βH =
∞∏
n=1

1

1− zv(qn) + nf zf (qn)− ns zs(qn)
. (2.5)

The partition functions in eq. (2.5) are infinite products of rational functions in q =

e−β/R, and q is a real-analytic function of β/R. If we analytically continue β/R ∈ R+

to a complex parameter β/R → −2πiτ with τ = t1 + it2, so that t2 = β/(2πR), the

confining-phase partition functions become meromorphic functions of τ ∈ H, the complex

upper half-plane. In this paper, we shall show that Z(τ) and Z̃(τ) are built out of modular

forms and Jacobi forms with modular parameter τ , and explore the consequences of this

fact. Indeed, we shall see that these observations hold for all nf and ns.

2.3 Comments on confinement in the small-RΛ limit

Adjoint-matter gauge theories in the limit relevant to eq. (2.5) behave in the ways that one

would expect from well-to-do confined-phase gauge theories, at least as long as β&R [6, 12]:

• The thermal and twisted free energies scale as N0.

• Center symmetry is unbroken.

We note that the realization of center symmetry and the large-N scaling of the free energy

are the only two commonly-used order parameters for confinement at large N that make

sense within finite volumes. Some other popular order parameters, such as the string

tension inferred from the energy of a pair of heavy probe quarks as they become widely

separated, must be defined in an infinite-volume limit. Thus, given that our goal is to use

RΛ as a control parameter for the study of the large-N confined-phase spectrum, it seems

reasonable to characterize the notion of confinement by these two order parameters.

As a consequence of their unbroken center symmetry, gauge theories on S3
R × S1

β en-

joy large-N volume independence in the size of S1 [12]. Also, the thermal densities of

states ρ(E) have a Hagedorn behavior, ρ(E) → e+βHE for large E, in the confined phase.

(In ref. [13] it is even conjectured that Hagedorn behavior of the thermal density of states

and center symmetry are tied to each other.) When β ∼ R, Hagedorn instabilities may drive

a phase transition to a deconfined phase, depending on the matter content and the bound-

ary conditions for fermions on S1. The reason is that using periodic boundary conditions

– 8 –
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for fermions inserts (−1)F into the partition function, and this can result in cancellations

that lead to the elimination of Hagedorn instabilities. Naively one might have thought that

in non-supersymmetric systems the existence of Hagedorn scaling in the density of states

would necessarily force deconfinement transitions regardless of boundary conditions, but

this is not always true, as emphasized in refs. [9, 14]. Even in non-supersymmetric systems,

there are sometimes remarkable cancellations between bosonic and fermionic states which

end up preserving confinement for any β. These cancellations are associated with emergent

large-N fermionic symmetries and large-N volume independence [14].

On general grounds, we expect the confined phase of such large-N theories to be

describable as weakly-coupled string theories. We note, however, that on S3
R × S1

β the

energy E of states at excitation level n is given by

E(n) = n/R , (2.6)

while it can be shown that the thermal density of states ρ(n) scales as [6, 7]

ρ(n) ∼ e+βHn as n→∞ . (2.7)

This should be contrasted with the behavior of free string theories in flat space, where

E(n) ∼
√
n while ρ ∼ eβH

√
n. Here, however, we are far from the flat-space limit, since

the effective string tension ∼ 1/R that one would infer from the spectrum is of the same

magnitude as the curvature of the S3×S1 spacetime. Consequently we find the asymptotic

behavior indicated in eq. (2.7).

3 Modularity of large-N partition functions

In this section we show that the partition functions of adjoint-matter confining gauge

theories on S3 × S1 at large N and λ = 0 can be rewritten as finite products of modular

forms and Jacobi forms in the variable τ . The fact that this rewriting is possible is one

of our central results. Since the chiral torus partition functions of 2D CFTs are finite

products of modular forms, this is a key piece of evidence for the relation in eq. (1.1). In

this regard, our results here generalize those of refs. [4, 9]. The results of this section also

have some overlap with those of ref. [15], which appeared as this paper was being prepared

for submission.

As a warm-up, in section 3.1 we show that the N = 4 superconformal index can be

written as a finite product of modular forms at large N . Section 3.2 contains a demon-

stration that the partition functions of generic adjoint-matter theories can be written as

modular forms at large N , while section 3.3 explains how to write confined-phase partition

functions as modular forms in the exceptional case of QFTs that would be supersymmetric

in the flat-space limit. Finally, in section 3.4, we shall see that the modular-form represen-

tation of the partition functions of theories with only bosonic matter fields simplifies in a

particularly significant way — an observation already exploited in ref. [4].
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3.1 Large-N superconformal index

As described in refs. [16, 17], the N = 4 superconformal index I is an S3 × S1 parti-

tion function for N = 4 supersymmetric Yang-Mills (SYM) theory, where the theory is

coupled to the curvature in such a way that some of the supercharges are unbroken. By

construction, I is a kind of Witten index, and does not depend on the ’t Hooft coupling

λ. The gauge theory has an SO(4) ' SU(2)1 × SU(2)2 isometry group for S3, associated

with two conserved Cartan angular momentum charges j1,2; a U(1) isometry group for

S1, associated with the energy E; and a global SU(4) R-symmetry, associated with three

conserved Cartan charges Ri, i = 1, 2, 3. The N = 4 superconformal index I depends on

four continuous parameters T, V,W, Y as

I(T, Y, V,W ) = Tr (−1)FT 2(E+j1)Y 2j2V R2WR3 . (3.1)

At large N , the superconformal index can be written via eq. (4.7) of ref. [16]:

I(T, Y, V,W ) =
∞∏
n=1

1

1− f(Tn, Y n, V n,Wn)
(3.2)

where

1− f(T, Y, V,W ) =
(1− T 2V )(1− T 2W/V )(1− T 2/W )

(1− T 3Y )(1− T 3/Y )
. (3.3)

One way to derive this expression is by explicitly counting the states which can contribute

to the index, with attention paid to the U(N) singlet constraint. Another approach to

finding I proceeds by evaluating a path-integral on S3 × S1 with certain fugacities turned

on, in the λ→ 0 limit. The only mode which remains massless on S3 is the holonomy of the

Wilson loop wrapping S1. Integrating out all other (massive) modes yields a matrix model

which determines an effective potential for the eigenvalues of the Wilson loop. Eq. (3.2)

results from the observation that this one-loop effective potential is minimized by a center-

symmetric eigenvalue distribution for all β/R and evaluating the Gaussian integral around

this configuration. The Gaussian approximation becomes exact at large N . The large-N

limit of I can be thought of as a ‘confining-phase’ partition function, in the limited sense

that it is associated with a center-symmetric holonomy for the color gauge field.

We now point out that for generic values of T, V,W, Y , eq. (3.2) can be re-expressed

in terms of objects with known modular transformations. To do this we first parametrize

V,W, Y as

V = T v, W = Tw, Y = T y, (3.4)

and then define the modular parameter τ via

T = e−β/2R = e2πiτ . (3.5)

One can associate the imaginary part of τ with a ratio of the circumferences of S1 and

S3: Im τ = β
2π(2R) . The physical interpretation of Re τ within the index is less clear; our

expression above amounts to analytically continuing T = e−t, t ∈ [0, 1) to T = e2πiτ , τ ∈ H.
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With these identifications, we obtain

I(T, Y, V,W ) =
∞∏
n=1

(1− T (3+y)n)(1− T (3−y)n)

(1− T (2+v)n)(1− T (2+w−v)n)(1− T (2−w)n)

=
η ((3 + y)τ) η ((3− y)τ)

η ((2 + v)τ) η ((2 + w − v)τ) η ((2− w)τ)
, (3.6)

where we have used the product representation of the Dedekind η function. The fact

that such an expression is available is non-trivial, because it means that the energies and

degeneracies of the states contributing to I are essentially those of a finite collection of

two-dimensional free field theories. We note that already at finite N , it is known that

the Schur limit of the superconformal index is controlled by a 2D chiral algebra [18], and

consequently Schur limits of superconformal indices have a modular structure [18–22]. It

would be very interesting to understand the relation between our simple observations about

the large-N limit of the superconformal index of ref. [16], and the detailed discussions of

modularity in superconformal indices in ref. [18].

The result in eq. (3.6) has several interesting and useful properties. For instance, it

allows a Cardy-like [23] relation between the small-β and large-β behaviors of the large-N

limit of the index. (For an interesting discussion of Cardy-like relations for superconformal

indices at finite N , see ref. [24].) The asymptotics of I can be read off from the appropriate

asymptotics of the η functions, bearing in mind that the small- and large-β asymptotics

are related by modular transformations acting on the argument of each η function. We

refer to the resulting relation as “Cardy-like” because the index is modular covariant, in

the sense of being built out of modular forms, but is not modular invariant. Consequently,

the relation between small- and large-β asymptotics is more complicated than in ref. [23].

First, at large β, i.e., at large Im τ , we have

η((3 + y)τ) ∼ e2πi(3+y)τ/24 , η((3− y)τ) ∼ e2πi(3−y)τ/24 , η((2 + v)τ) ∼ e2πi(2+v)τ/24 ,

η((2+w−v)τ) ∼ e2πi(2+w−v)τ/24 , η((2− w)τ) ∼ e2πi(2−w)τ/24. (3.7)

Putting these asymptotics together, we see that at large β (i.e., at large Im τ), we have

lim
β→0
I(β) = 1. (3.8)

To say this another way, each η function has a vacuum energy which is dictated by its

modular properties, and the combination of vacuum energies relevant to the index is

Evac =
1

24
[(3 + y) + (3− y)− (2 + v)− (2 + w − v)− (2− w)] = 0. (3.9)

Not coincidentally, Evac = 0 is also the result predicted by T-reflection symmetry [11]. We

hasten to make two comments for readers who wish to compare our result to results in

some of the prior literature [25–31]. It is correct to call eq. (3.9) the Casimir energy given

two assumptions. One is that the large-N limit is taken before the removal of the UV cutoff

(which must be introduced at intermediate stages in calculating vacuum energies). The

other is that we assume that the renormalization scheme being used is consistent with the
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modular properties of the large-N spectrum, as expressed in eq. (3.6). If we were to shift

the Casimir vacuum energy in the large-N QFT away from zero to ∆, we would find that I
could not be written directly as a combination of modular forms. In such a case, we would

get a remaining factor of q∆ in eq. (3.2). For a more detailed discussion of the computation

of vacuum energies at large N and the implications of modularity, see section 4.1.

Second, the modular properties of the η functions imply that for small β, i.e., for small

Im τ , we have

η((3 + y)τ) ∼ e−πi/12(3+y)τ , η((3− y)τ) ∼ e−πi/12(3−y)τ , η((2 + v)τ) ∼ e−πi/12(2+v)τ ,

η((2 + w − v)τ) ∼ e−πi/12(2+w−v)τ , η((2− w)τ) ∼ e−πi/12(2−w)τ . (3.10)

This allows us to establish that for small, purely imaginary τ (equivalently, for small β),

the index behaves as

lim
β→0
I(β) ∼ exp

 iπ
(

1
v−w−2 −

1
v+2 + 1

w−2 + 1
3−y + 1

y+3

)
12τ


= exp

π2R
(

1
v−w−2 −

1
v+2 + 1

w−2 + 1
3−y + 1

y+3

)
3β

 . (3.11)

This follows the characteristic 2D behavior summarized in eq. (1.3), rather than the small-

circle behavior one might expect from eq. (1.2) for a generic 4D theory. In this case, the lack

of a β−3 divergence in log I is easy to understand: it is simply due to supersymmetry [24].

For any QFT with a (−1)F -twisted partition function Z̃, the coefficient of β−3 in log Z̃

can be related to the coefficient of the quartic UV-cutoff divergence in the vacuum-energy

spectral sum of the theory. But in supersymmetric field theories, this divergence is absent,

and so the β−3 coefficient must vanish. It then follows that the small-β expansion of log Z̃

begins as β−1. However, the reason for the vanishing of the coefficient of β−3 is more subtle

in our manifestly non-supersymmetric examples below.

The relation between the spectrum encoded in the large-N superconformal index and

the spectrum of a 2D theory can be made much sharper, at least for certain choices of

fugacities. Let us consider a simple one-parameter slice through the space of fugacities,

defined by setting

v = 1− y, w = (1− y)/2, (3.12)

and let us denote the resulting index as I(τ, y). The small-|τ | asymptotics derived above

simplify to I(τ, y)→ exp
[
− 2πi

16τ(y+3)/2

]
, and the index can now be written as

I(τ, y) =
η ((y + 3)τ)

η
(

1
2(y + 3)τ

)2 =
1√
2

1

η
(

1
2(y + 3)τ

) [ϑ[ 1
2
0

] (
1
2(y + 3)τ

)
η
(

1
2(y + 3)τ

) ] 1
2

. (3.13)

Introducing a modified modular parameter τ̃ ≡ 1
2(y+ 3)τ , we thus see that the index takes

the form

I(τ̃) =
1√
2

1

η (τ̃)

[
ϑ
[ 1
2
0

]
(τ̃)

η(τ̃)

] 1
2

. (3.14)

– 12 –



J
H
E
P
0
6
(
2
0
1
6
)
1
4
8

We are now in a position to give our first explicit illustration of the 4D-2D relation

advertised in the Introduction. First, recall that the left-moving sector of a c = 1 non-

compact free scalar CFT on a torus with modular parameter τ̃ has a partition function given

by [η(τ̃)]−1. Second, recall that the left-moving sector of a c = 1/2 free fermion CFT on a

torus with NS-R boundary conditions has a partition function given by
{
ϑ
[ 1
2
0

]
(τ̃) /η(τ̃)

}1/2
.

A direct product of these CFTs is a supersymmetric CFT. Thus, evaluating the total trace

over the Hilbert space of, e.g., the left-moving degrees of freedom yields a (chiral) partition

function of the 2D CFT:

Z2D =
1

η(τ̃)

[
ϑ
[ 1
2
0

]
(τ̃)

η(τ̃)

] 1
2

. (3.15)

Comparing eq. (3.15) to eq. (3.14), we thus find the relation

I(τ̃) = Z2D(τ̃), (3.16)

which matches the general form of eq. (1.1). Of course, our identification of a specific

2D CFT associated to I(τ̃) is not unique, since there may be many distinct QFTs with

coincident spectra. It is nevertheless interesting that an identification between the partition

functions of 4D and 2D CFTs is possible at all, given that 4D-2D isospectralities are not

generally expected for the reasons already mentioned in the Introduction.

In the case of the superconformal index, the large-N equivalence between the 4D

and 2D theories extends beyond the spectrum. The reason is that derivatives of the 4D

partition function with respect to the chemical potential y yield correlation functions of

the conserved charge which couples to y. Since the modular parameter τ̃ of the 2D theory

has a known dependence on y, this allows one to relate at least some correlation functions

in the 4D theory to observables of the 2D theory.

3.2 Confining theories with generic matter content

We now turn back to generic adjoint-matter large-N QFTs on S3 × S1, with either peri-

odic or anti-periodic boundary conditions for fermions, and show how eq. (1.1) arises in

this context. More precisely, we now show that the partition functions in eq. (2.5) can be

rewritten as a finite product of modular forms and Jacobi theta-functions, with a modular

parameter τ = t1 + it2 defined at the end of section 2. These results hold for any nf , ns.

Crucially, the modularity properties we find are not tied to supersymmetry. Supersym-

metric cases occur where nf = κ + 1, ns = 2κ, κ ∈ N, which corresponds to N = 1 SYM

theory with κ adjoint matter supermultiplets.

3.2.1 (−1)F -twisted partition functions

Let us introduce the shorthand notation Q ≡ q1/2, and start our analysis with (−1)F -

twisted partition functions. These partition functions can be written as

Z̃(τ) =
∞∏
n=1

(
1−Q2n

)3
(1 +Q6n)− (ns + 3)(Q2n +Q4n) + 4nf Q3n

=
∞∏
n=1

(
1−Q2n

)3
P̃twisted(Qn)

. (3.17)
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A priori, if P̃twisted(Q) were a generic sixth-order polynomial, we would have no hope

of being able to write eq. (3.17) in terms of modular forms with closed-form expressions

for their parameters. However, the six roots of the polynomial P̃twisted(Q) turn out to be

a set of three pairs of numbers which are reciprocals of each other. This is a consequence

of the T-reflection symmetry discussed in section 2; see appendix B and ref. [11] for a full

discussion. Thus, P̃twisted(Q) can be factored as

P̃twisted(Q) =
3∏

α=1

(Q+ zα)(Q+ 1/zα) . (3.18)

With this factorization in hand, we now use the product representations of the

Dedekind η(τ) function and the elliptic ϑ functions with characteristics ϑ
[
α

β

]
(τ), tabulated

in appendix A, to rewrite Z̃(τ) in a way that exposes its modular properties:

Z̃(τ) =
∞∏
n=1

3∏
α=1

(1−Q2n)

(1 +Qnzα)(1 +Qn/zα)

=

3∏
α=1

∞∏
n=1

(1−Q2n)

(1 +Q2nzα)(1 +Q2n/zα)

1

(1 +Q2n−1zα)(1 +Q2n−1/zα)

=

3∏
α=1

∞∏
n=1

(1− qn)

(1 + qnzα)(1 + qn/zα)

1

(1 + qn−1/2zα)(1 + qn−1/2/zα)

=

3∏
α=1

2 cos(πbα)η(τ)3

θ2(bα, τ)

1

θ3(bα, τ)
(3.19)

where zα = e2πibα and again q = e−β/R → e2πiτ . Note that in passing between the first

and second lines of eq. (3.19), we have split the product into a product over even and

odd integers n. Likewise, in passing between the third and fourth lines of eq. (3.19), we

have assumed that zα 6= −1 (or bα 6= 1/2). This assumption holds for generic nf and ns,

but fails for certain special values of nf and ns. We shall discuss the cases with zα = −1

in section 3.3.

For the rest of our analysis, it will be convenient to rewrite this result as

Z̃(τ) =
3∏

α=1

[
2e−iπbα cos(πbα) η(τ)2 1

η(τ)

η(τ)

ϑ
[
1/2

bα

]
(τ)

η(τ)

ϑ
[

0

bα

]
(τ)

]
, (3.20)

where have again used the assumption zα 6= −1. The expression in eq. (3.20) is one of

our key results. As we see from eq. (3.20), this expression is a finite product of modular

forms and Jacobi forms. Consequently, this establishes one of our main claims: Z̃(τ) is

a (component of a vector-valued, meromorphic) modular form at N = ∞, with modular

weight +3/2. We further explore the modular properties of Z̃(τ) in sections 4 and 5.

3.2.2 Thermal partition functions

We now turn to the thermal partition functions. The infinite-product representation of

the thermal partition function can be obtained from eq. (3.17) by using Z(Q) = Z̃(−Q).

– 14 –
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The presence of a factor of (−1)n in front of the fermion terms in the infinite products in

thermal partition functions introduces a minor subtlety for rewriting the infinite product

using modular forms. To illustrate this, we observe that

Z(τ) =

∞∏
n=1

(
1−Q2n

)3
(1 +Q6n)− (ns + 3)(Q2n +Q4n) + (−1)n4nf Q3n

=
∞∏
n=1

(
1−Q2n

)3
P̃twisted(Q2n)

1

Pthermal(Q2n−1)
. (3.21)

This makes it clear that for even n, the analytic structure is controlled by the polynomial

P̃twisted we saw before, while for odd n, the analytic structure is controlled by

Pthermal(τ) =
3∏

α=1

(Q− zα)(Q− 1/zα) . (3.22)

We are now in a position to rewrite eq. (3.21) in terms of modular forms. We obtain

Z(τ) =
∞∏
n=1

3∏
α=1

(1−Q2n)

(1 +Q2nzα)(1 +Q2n/zα)

1

(1−Q2n−1zα)(1−Q2n/zα)

=

∞∏
n=1

3∏
α=1

(1− qn)

(1 + qnzα)(1 + qn/zα)

1

(1− qn−1/2zα)(1− qn−1/2/zα)

=

3∏
α=1

2 cos(πbα)η(β/R)3

θ2(bα, β/R)

1

θ4(bα, β/R)
, (3.23)

which we rewrite as

Z(τ) =
3∏

α=1

[
2e−iπbα cos(πbα) η(τ)2 1

η(τ)

η(τ)

ϑ
[
1/2

bα

]
(τ)

η(τ)

ϑ
[

0

bα + 1
2

]
(τ)

]
. (3.24)

Once again, in obtaining these results we have assumed that zα 6= −1 (i.e., bα 6= 1/2).

Like the expression in eq. (3.20), this expression is another of our key results and has

well-defined behavior under modular transformations. We thus conclude that the confined-

phase large-N partition functions of generic 4D adjoint-matter gauge theories on S3 × S1

in the λ→ 0 limit are (components of vector-valued) modular forms, with modular weight

+3/2. Furthermore, consulting the conventions laid out in appendix A, we see that the

modular T : τ → τ+1 transformation exchanges the functions which distinguish Z̃(τ) from

Z(τ), i.e., T : ϑ
[

0

bα + 1/2

]
(τ)↔ ϑ

[
0

bα

]
(τ). Thus, the modular T -translation maps the twisted

and thermal partition functions to each other:

T : Z ←→ Z̃ . (3.25)

More details concerning the behavior of Z(τ) and Z̃(τ) under modular transformations are

discussed in section 5.
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3.3 Confining theories with supersymmetric matter content

While for generic choices of nf and ns the modular weight of the large-N partition functions

is +3/2, it is different for theories with N = 1 supersymmetry. In such theories, nf and

ns are related by nf = κ + 1 and ns = 2κ, where κ ≥ 0 is the number of adjoint N = 1

matter multiplets.

It is easy to see why these cases require special treatment. When nf = κ + 1 and

ns = 2κ with κ ≥ 0, the twisted polynomial, which dictates the pole structures common

to both the twisted and thermal partition functions at even n in eqs. (3.17) and (3.21),

simplifies to

P̃ κtwisted(τ) = (Q+ (−1))2
[
(Q4 + 1) + 2(Q+Q3)− 2κQ2

]
. (3.26)

So for κ = 0, 1, 2 we see that P̃ κtwisted(Q) has a second-order root at Q = 1. In the notation

of the previous section, this implies that one of roots takes the value zα = −1 due to the

(1−Q)2 factor present for typical supersymmetric theories. For the even more special case

of κ = 3, corresponding to N = 4 SYM, the root at Q = 1 becomes fourth-order.

The position of the root at zα = −1, corresponding to βα = 1/2, is the source of the

difficulty. As we have seen, all of our partition functions contain the expression

cos(πbα)

ϑ
[ 1

2
bα

]
(τ)

. (3.27)

However, while this expression for bα 6= 1/2 is perfectly reasonable and straightforward to

interpret, for bα = 1/2 we find that both the numerator and the denominator vanish identi-

cally. Indeed, with bα = 1/2 the denominator becomes nothing but ϑ
[

1
2
1
2

]
(τ) = θ1(0, τ) = 0.

Thus, for zα = −1 or βα = 1/2, our previous expressions become indeterminate.

There are two ways to proceed, which give the same result. One way is to look

directly at the infinite-product expressions for the supersymmetric cases and read off their

expressions in terms of modular forms and Jacobi forms. The second way is to obtain

modular expressions for these special cases by taking a limit of the modular expressions

valid for generic nf and ns. Due to the subtlety highlighted above, we do this by identifying

cos(π/2)

ϑ
[

1
2
1
2

]
(τ)

= lim
bα→1/2

cos(πbα)

ϑ
[ 1

2
bα

]
(τ)

= lim
bα→1/2

cos(πbα)

θ1(bα − 1, τ)
=

1

2η(τ)3
(3.28)

where in the final equality we have used l’Hôpital’s rule along with the identity

∂cθ1(c, τ)

∣∣∣∣
c=0

= 2η(τ)3 . (3.29)

However, we see that this final expression has modular weight k = −3/2, as opposed to

the modular weight k = −1/2 of the expression in eq. (3.27) with which we started. Thus,

we see that the modular weight drops by 1 when bα hits 1
2 . More succinctly, we have

∞∏
n=1

1

(1 + qnzα)(1 + qn/zα)
=


2 cos(πbα)q1/12η(τ)

ϑ

[
1
2

b

]
(τ)

zα 6= −1

q1/12

η(τ)2 zα = −1

(3.30)
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Thus modular-form representations for the infinite products of gauge-theory partition func-

tions with (exceptional) roots zα = −1 have modular weights which are one unit lower than

those with generic roots zα 6= −1.

We emphasize that the second approach described above rests on obtaining the result

for the special case bα = 1/2 via the formal limit bα → 1/2. While this seems mathemat-

ically reasonable, we note that arbitrary real (or complex) values of bα do not generally

correspond to physically realizable systems, because this amounts to allowing nf and ns
to be non-integral.

Combining these observations, we see that the modular weight of our overall expression

drops by 1 whenever a pair of roots of P̃ κtwisted(Q) hits Q = 1. It can be shown that this

singular locus in parameter space is given by the line ns = 2nf − 2, corresponding to

theories with supersymmetric matter content. Except at ns = 6, there is a single pair of

roots at Q = 1 along this line. Exactly at ns = 6 — corresponding to the matter content of

N = 4 SYM theory — there are two pairs of roots at Q = 1. Thus the modular weight of

the partition functions of theories with supersymmetric matter content is 1/2 rather than

3/2 for κ = 0, 1, 2.

For κ = 3, we see that Ptwisted has a quadruple root corresponding to z1 = z2 = −1,

which triggers a further reduction1 of the modular weight of the partition function, to

−1/2. As a result of these observations, the twisted partition functions of gauge theories

with κ = 0, 1, 2 or κ = 3 adjoint N = 1 matter superfields on S3 × S1 take the form2

Z̃κ<3(τ) = η(τ)

(
η(τ)

ϑ
[

0
1
2

]
(τ)

)∏
±

2 cos(πb±)e−iπb± η(τ)2

ϑ
[
1/2

b±

]
(τ) ϑ

[
0

b±

]
(τ)

Z̃κ=3(τ) =
1

η(τ)

(
η(τ)

ϑ
[

0
1
2

]
(τ)

)2
2 cos(πbκ=3)e−iπbκ=3 η(τ)2

ϑ
[

1/2

bκ=3

]
(τ) ϑ

[
0

bκ=3

]
(τ)

, (3.31)

while the thermal partition functions are

Zκ<3(τ) = η(τ)

(
η(τ)

ϑ
[
0

0

]
(τ)

)∏
±

2 cos(πb±)e−iπb± η(τ)2

ϑ
[
1/2

b±

]
(τ) ϑ

[
0

b± + 1
2

]
(τ)

Zκ=3(τ) =
1

η(τ)

(
η(τ)

ϑ
[
0

0

]
(τ)

)2
2 cos(πbκ=3)e−iπbκ=3 η(τ)2

ϑ
[

1/2

bκ=3

]
(τ) ϑ

[
0

bκ=3 + 1
2

]
(τ)

. (3.32)

1One may wonder if there is an even more special theory which has P̃twisted(Q) = (1 − Q)6. This

does not seem possible in the set of theories we consider. Expanding out this putative polynomial yields

P̃twisted(Q) = (1 +Q6) + 15(Q2 +Q4)− 20Q3 − 6(Q+Q5). The term (Q+Q5) cannot arise for any nf , ns,

even if we allow ns, nf to be arbitrary complex numbers. We also note that if one were to find a theory

with P̃twisted(q) = (1 − q)6, the resulting partition function could be written using Dedekind η functions

and ϑ functions with rational characteristics, indicating that this would be a partition function without

Hagedorn singularties for any choice of boundary conditions. See ref. [9] for details on the connection

between Hagedorn growth and values of zα with |zα| 6= 1.
2In these expressions, b± = b±(κ) for κ < 3 are given by b±(κ) = 1

2π
cos−1

(
1±
√

1+κ
2

)
. For κ = 3, we

have bκ=3 = b+(3) = 1
2π

cos−1(2); by contrast, b−(3) = 1
2

and thus eq. (3.30) must be used in order to derive

the given modular-form representation. The characteristic-dependent prefactors are simply given by the

product
∏
α 2 cos(πbα)e−iπbα . These numerical factors are algebraic numbers for all ns, nf ∈ {0, 1, 2, . . .}.
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In summary, then, the confined-phase partition functions of large-N gauge theories

with 0 ≤ κ < 3 adjoint matter supermultiplets have modular weight +1/2. The theory

with κ = 3 adjoint matter multiplets, N = 4 SYM theory, has modular weight −1/2.

3.4 Confining theories with purely bosonic matter

The formulas derived in section 3.2 continue to apply for purely bosonic theories, with

arbitrary ns and nf = 0. However, for our purposes it is useful to derive shorter equiva-

lent expressions for purely bosonic matter content. A demonstration that the expressions

derived in this section are consistent with those in section 3.2 is given in appendix C.

The partition functions of bosonic confining large-N theories can be written as

Zbosonic(τ) =

∞∏
n=1

(1− qn)3

(1 + q3n)− (3 + ns)(qn + q2n)
=

∞∏
n=1

(1− qn)3

P (qn)
. (3.33)

The polynomial P (q) = (1 + q3)− (3 + ns)(q + q2) has a root at q = −1, and factorizes as

P (q) = (1 + q)(q2 − (4 + ns)q − 1) = (q + 1)(q − zb)(q − 1/zb) (3.34)

where

zb =
4 + ns

2
+

√(
4 + ns

2

)2

− 1 . (3.35)

Using this, we see that we can rewrite the partition function for purely bosonic theories as

Zbosonic(τ ;ns) = 2
√

2 i sin (πbns) e
−iπbη(τ)3 η(τ)

ϑ
[

1/2

bns + 1/2

]
(τ)

[
η(τ)

ϑ
[
1/2

0

]
(τ)

]1/2

(3.36)

where bns ≡ 1
2π cos−1 (2 + ns/2). Of course, eq. (3.36) still has modular weight +3/2, just

as for the general cases represented in eqs. (3.20) and (3.24). This shows that the confined-

phase large-N partition functions of purely bosonic theories have the simplest structure of

all of our non-trivial examples.

4 Implications of modularity of large-N partition functions

We have seen that the confined-phase large-N partition functions of adjoint-matter gauge

theories on S3×S1, in the λ→ 0 limit, can always be written as finite products of Dedekind

η functions and Jacobi ϑ functions. The generalization of these observations from purely

bosonic Yang-Mills theory in ref. [4] to gauge theories with arbitrary numbers of adjoint

scalars and adjoint fermions has several dramatic consequences.

4.1 Vanishing vacuum energy and large-|τ | behavior

Our results imply that the large-N theories we consider have vanishing vacuum energy in

a renormalization scheme consistent with the symmetries of the large-N spectrum, as first

found by other means in ref. [10].
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The value of Evac is defined as a regularized and renormalized sum over the spectrum:

Evac =
1

2

∞∑
n=0

dnωn

∣∣∣∣
µuv

+ Ecounter−terms(µuv) (4.1)

where |µuv refers to a regularization of the sum involving some high-energy scale µuv, and

where Ecounter−terms(µuv) represents the renormalization-scheme-dependent contributions

of divergent and finite counter-terms. Given a fixed regularization and renormalization

scheme, Evac is trivially well defined, but Evac becomes most interesting if it can be shown

that its value is the same for any renormalization-scheme choice consistent with the symme-

tries of the theory. If this happens, then Evac can be given a physical interpretation in the

limit µuv →∞. We emphasize that in deciding whether an observable is scheme-dependent

or not, it is vital to have a complete understanding of the symmetries of the QFT because

this affects the allowed choices of renormalization scheme. So until the constraints of possi-

ble emergent symmetries of large-N confining theories are understood, it can be somewhat

premature to decide whether a quantity such as Evac is scheme-dependent.

In generic 4D Poincare-invariant QFTs in finite volume, computations of Evac using,

e.g., spectral heat-kernel regulators produce a µ4
uv divergence. Canceling this divergence

requires the introduction of a ‘cosmological constant’ counterterm

µ4
uv

∫
d4x
√
g , (4.2)

where µuv is the UV scale. If the 4D QFT is formulated in curved space-time, one also

expects a µ2
uv divergence related to the curvature; this requires the addition of an ‘Einstein-

Hilbert’ counter-term

µ2
uv

∫
d4x
√
gR . (4.3)

Without demanding scale invariance, finite cosmological-constant terms and finite Einstein-

Hilbert terms are also allowed. This means that the value of Evac is regularization-scheme-

dependent in generic non-scale-invariant 4D theories.

Our considerations focus on non-Abelian gauge theories in the free limit, λ→ 0, which

are scale-invariant. Scale-invariant QFTs can only have UV divergences in Evac which

are power laws in µuv, which can be cancelled by the cosmological constant and Einstein-

Hilbert counter-terms. Finite cosmological constant terms and finite Einstein-Hilbert terms

are ruled out by scale invariance. But there is also a dimensionless term one can write when

putting a theory on a curved manifold,

b

∫
d4x
√
gR2. (4.4)

As emphasized in ref. [28], changes of b produce additive shifts in the S3 Casimir energy, in

the same way that changing Λ4 in
∫
d4x
√
gΛ4 produces additive shifts of the vacuum energy

of non-scale-invariant theories. All values of b are consistent with 4D scale invariance. This

means that in generic 4D scale-invariant theories, the value of Evac will depend on the

choice of regularization scheme. Thus, as argued in ref. [28], Evac is usually not a universal

observable in the renormalization-group sense even in systems with scale or conformal

invariance in 4D. It depends on the choice of renormalization scheme, related to a choice of b.

To make Evac a ‘continuum’ observable, one needs to consider a special subclass of theories
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which have extra symmetries which constrain the possible values of b. A prominent example

of such theories are superconformal quantum field theories, as emphasized in ref. [28].

We now observe that Evac appears to be a scheme-independent observable in large-

N gauge theories in the limit considered in this paper. The basic point is that large-N

4D gauge theories in the λ → 0 limit are non-generic 4D theories. In the limit λ → 0,

they are clearly scale-invariant, which forbids most finite counter-terms, but in principle

leaves b from eq. (4.4) unfixed. The far less trivial point is that these theories have rich

emergent symmetries at large N , as revealed by the modular structure of their partition

functions. The modularity of the partition functions is consistent with only one choice of b,

which is b=0.

To show how modularity fixes the value of b, we first recall why the normalizations

of modular forms are fixed by their modular properties. Modular forms f(τ) have q-series

representations, f(τ) = q∆
∑

n≥0 cnq
n, and one can think of q = e2πiτ as a Boltzmann

factor. Then the powers of q are the energies (in natural units) of a collection of states

which are related by conformal symmetry to a ‘primary’ state with energy ∆, and f(τ) is

a type of chiral partition function. The individual Boltzmann factors qn = e2πinτ are not

well-behaved under the S-transformation, so the modular properties of f(τ) are properties

of the analytic continuation of the q-series, rather than properties of the individual terms

in the q-series. This means that one cannot change the coefficients cn without destroying

the modular transformation properties of f(τ). It also implies that the vacuum energy ∆

appearing in the definition of f(τ) cannot be be shifted. To see this, observe that if one

were to shift ∆ → ∆ + ∆′, one would obtain f(τ) → f ′(τ) ≡ q∆′f(τ). But f ′(τ) is not a

modular form unless ∆′ = 0 because q∆′ is not a modular form unless ∆′ = 0. Indeed, if

a function f(τ) is a modular form, its overall ‘vacuum energy’ ∆ is fixed by the modular

properties and can be determined via a sum rule on cn.

These observations imply that our rewriting of 4D partition functions in terms of mod-

ular and Jacobi forms is possible only for a special value of the vacuum energy Evac of the

4D QFT — a value which is determined by the modular transformation properties of the

modular forms comprising Z4D. These modular transformation properties are, in turn, de-

termined by the spectrum of the theory. Given the modular properties of the spectrum, the

value of Evac, calculated in regularization schemes consistent with the spectral symmetries,

is thus uniquely determined.

Thus, remarkably, if one takes the constraints from the modular symmetries seriously,

the value of Evac for 4D large-N QFTs in the λ→ 0 limit becomes a scheme-independent

observable in the renormalization-group sense. Moreover, there are in fact two more sur-

prises. First, we find that the value of Evac turns out to be numerically universal across all

of our examples, meaning that Evac is independent of ns and nf . Second, and even more

surprisingly, this universal result for Evac of the large-N confining gauge theories is zero:

Evac = 0 =


3× 1

24 +
(

1
24 −

1
8

)
+ 1

2

(
1
24 −

1
8

)
, pure YM

−1× 1
24 + 2

(
1
24 − 0

)
+
(

1
24 −

1
8

)
+
(

1
24 − 0

)
, N = 4 SYM

3×
[

1
24 +

(
1
24 −

1
8

)
+
(

1
24 − 0

)]
, QCD(Adj) with nf = 2

. . . . . .

(4.5)
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This matches what was found in refs. [10, 11] by a direct evaluation of the spectral sums

involved in Evac. In view of the considerations above, our results imply that in the

renormalization-scheme choice consistent with the symmetries of the large-N spectrum,

one must set the coefficient b of
∫
d4x
√
gR2 to zero. The multi-faceted universality of

these results cries out for a first-principles explanation, which we hope will become under-

stood in future work.

Before moving on, we comment on the features of the large-N limit important for our

result. As we explained in section 2.1, we have assumed that the large-N limit is taken

before all other limits, including the continuum limit µuv → ∞. Our result for Evac is

valid with this ordering of limits. Other calculations of Evac in large-N gauge theories on

S3 × S1, both directly in field theory, as in ref. [6], and using gauge-gravity duality, as in

ref. [32], use a different order of limits in which µuv is taken to infinity before N is taken

to infinity. This procedure leads to a different result in which Evac ∼ N2 6= 0. This simply

implies that the vacuum energy is sensitive to the ordering of limits.

4.2 Small-|τ | behavior

At high temperature, the partition functions of generic 4D QFTs on S3 × S1
β behave as

Vol−1
S3 logZ ∼ β−3. The argument for this comes down to a combination of dimensional

analysis and Wilsonian renormalization-group reasoning. Generic UV-complete QFTs can

be thought of as describing a renormalization-group flow between a UV fixed point and

an IR fixed point, both of which are scale invariant. At very high temperature, defined

as making the S1 circumference β much smaller than any other physical scale, the physics

becomes well described by the UV fixed point. At the UV fixed point, β is the only

dimensionful parameter, and dimensional analysis and the extensivity of the free energy

imply that limβ→0 logZ(β) ∼ −σVolS3β−3 for some numerical constant σ determined by

the details of the UV fixed point.

This prediction that limβ→0 logZ(β) ∼ −σVolS3β−3 would fail if σ were exactly zero,

since then logZ would become dominated by a subleading term in its small-β expansion.

But a vanishing σ coefficient is extremely non-generic, and can be interpreted as a loud

signal for the existence of a symmetry. For instance, in ref. [24] it was noted that σ

vanishes if one puts supersymmetric theories on S3 × S1 in a way that preserves some

supersymmetry. This is essentially because the value of σ is related to the value of the

vacuum energy of such theories in flat space, and the flat-space vacuum energy vanishes in

supersymmetric theories.

If a theory on S3 × S1 does not enjoy supersymmetry, however, one would not gen-

erally expect to find σ = 0. This can be illustrated by working out the high-temperature

behavior of a free scalar field on S3
R × S1

β . Here the partition function is Zfree scalar(τ) =

q1/240
∏
n≥0(1− qn)−n

2
, where q = e2πiτ = e−β/R. One can then verify that

lim
arg τ→π

2

lim
|τ |→0

logZfree scalar(τ) = lim
arg β→0

[
lim
|β|→0

logZfree scalar(τ)

]
∼ −VolS3

π2

90β3
, (4.6)

so that σ|free scalar = π2/90 6= 0.
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The behavior of large-N confining gauge theories on S3 × S1 turns out to be very

different than that seen in generic 4D QFTs. As a consequence of the fact that our 4D

confining large-N partition functions Z4D can be rewritten as finite products of modular

forms and Jacobi forms, we find that

lim
arg τ→π

2

[
lim
|τ |→0

logZ4D(τ)

]
∼ −σ 2πR

β
, (4.7)

for a non-vanishing constant σ that depends on ns and nf . The behavior in eq. (4.7) looks

like what we would expect in a 2D quantum field theory, rather than a generic 4D theory.

Given these results, we now describe the derivation of the scaling rule in eq. (4.7) in

two representative examples: N = 4 SYM with periodic boundary conditions on S3 × S1,

and pure YM theory on S3 × S1. In addition to this analytic derivation we numerically

observe this scaling, as shown in figure 2. We begin with two preliminary comments.

First, since Yang-Mills theory is obviously not supersymmetric, it is not possible to view

eq. (4.7) as a consequence of supersymmetry. Second, we note that for N = 4 SYM with

periodic boundary conditions, the confining partition function has no singularities when

|τ | → 0 along the imaginary axis. Thus, for the first example of twisted N = 4 SYM,

the two limits in eq. (4.7) commute. However, the limits do not commute in pure Yang-

Mills theory, as this theory has Hagedorn instabilities on arg τ = π/2 for |τ | � 1. Thus

eq. (4.7) is valid only with the ordering of limits indicated. If we were to reverse the order

of the limits, the small-β physics could not be explored from within the confining phase,

and we would have to work in the deconfined phase, where we would of course obtain

lim|τ |→0

[
limarg τ→π/2 logZdeconfined

4D (τ)
]
∼ β−3N2.

We begin our derivation of eq. (4.7) by considering the case of N = 4 SYM with

periodic boundary conditions for fermions, which has the large-N partition function given in

eq. (3.31). To make the notation more transparent, we relabel κ = 3→ N = 4 below. Our

task reduces to extracting the small-|τ | behavior of η(τ), ϑ
[

1/2

bN=4

]
(τ), ϑ

[
0

bN=4

]
(τ), ϑ

[
0

1/2

]
(τ).

This can be done by exploiting the behavior of these functions under the modular S-

transformation τ → −1/τ and consulting the product representations given in appendix A.

For η(τ), the fact that lim|τ |→∞ η(τ) ∼ exp(2πiτ ×1/24) and η(−1/τ) =
√
−iτη(τ) implies

that at small |τ | the behavior is

lim
|τ |→0

η(τ) ∼ (−iτ)−1/2e−
2πi
24τ . (4.8)

For ϑ
[

1/2

bN=4

]
(τ) the S relation is ϑ

[
1/2

bN=4

]
(−1/τ) =

√
−iτ eπibN=4ϑ

[
bN=4

−1/2

]
(τ). The fact that

lim|τ |→∞ ϑ
[
bN=4

−1/2

]
∼ exp(2πiτ × b2N=4/2) then implies that

lim
|τ |→0

ϑ
[

1/2

bN=4

]
(τ) ∼ (−iτ)−1/2e−πibN=4e−πib

2
N=4/τ . (4.9)

The same line of reasoning shows that

lim
|τ |→0

ϑ
[

0

bN=4

]
(τ) ∼ (−iτ)−1/2e−πib

2
N=4/τ , lim

|τ |→0
ϑ
[

0

1/2

]
(τ) ∼ 2(−iτ)−1/2e−

2πi
8τ . (4.10)

Putting all this together, we find that

lim
|τ |→0

Z̃N=4(τ) ∼ 1

2
cos(πbN=4)(−iτ)1/2e

iπ
4τ (1+8b2N=4) . (4.11)
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Figure 2. The small-|τ | behavior of the confining-phase partition function of pure YM theory (left)

and N = 4 SYM theory with periodic fermion boundary conditions (right), plotted as a function

of arg τ as arg τ → π/2.

Since with periodic boundary conditions N = 4 SYM theory has no Hagedorn instabil-

ities along the line arg τ = π/2, the arg τ → π/2 and |τ | → 0 limits commute. Setting

arg τ = π/2 we thus obtain eq. (4.7) with

σN=4 = −π
4

(
1 + 8b2N=4

)
. (4.12)

Now let us consider pure YM theory. To calculate the small-|τ | behavior of ZYM

we need to know the behavior of η(τ), ϑ
[

1/2

b + 1/2

]
(τ), ϑ

[
1/2

0

]
(τ) at small |τ |. Here we defined

b = b(ns = 0) = 1
2π cos−1(2) ≈ 0.2i. The small-|τ | behavior of η(τ) was already discussed

above, while it is easy to see that

lim
|τ |→0

ϑ
[
1/2

0

]
(τ) ∼ (−iτ)−1/2. (4.13)

The subtlety comes in the small-|τ | behavior of ϑ
[

1/2

b + 1/2

]
(τ), which, using the S-

transformation rule and the product representation of the ϑ
[
α

β

]
functions, can be shown

to take the form

lim
|τ |→0

ϑ
[

1/2

b + 1/2

]
(τ) ∼ (−iτ)−1/2e−

iπ
2

(1−2b)e−
iπ
4τ

(3+2b)2
[
−1+e−

2πib
τ

][
−1+e−

2πi(b+1)
τ

]
. (4.14)

Putting the asymptotics together, we find that

lim
|τ |→0

ZYM(τ) ∼ 2
√

2e
iπ(8b(b+3)+15)

8τ sin(πb)

(−iτ)3/2
(

1− e
2iπb
τ

)(
−1 + e

2iπ(b+1)
τ

) . (4.15)

Since b is pure imaginary, the factor in the denominator oscillates when arg τ approaches

π/2 and has zeroes when arg τ = π/2, so that eq. (4.15) has a sequence of poles along

arg τ = π/2, with an accumulation point at τ = 0. These are simply the modular

S-transformation images of the Hagedorn singularities of ZYM(τ). As a result, the small-

|τ | and arg τ → π/2 limits do not commute, because it does not make sense to ask to
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approach |τ | = 0 along arg τ = π/2 using the confined-phase partition function. As al-

ready explained above, we take the small-|τ | limit before taking the arg τ → π/2 limit, so

that the confined-phase partition function remains well defined. In this limit, the Yang-

Mills partition function behaves as

lim
arg τ→π/2

[
lim
|τ |→0

logZYM(τ)

]
∼ −π

8

(
1− 8b2

) 2πR

β
(4.16)

so that

σYM =
π

8

(
1− 8b2

)
. (4.17)

The calculations in these two examples can be performed for arbitrary nf , ns, and we

find that eq. (4.7) holds for all confined-phase large-N adjoint-matter gauge theories on

S3 × S1 in the λ → 0 limit. As we emphasized at the beginning of this subsection, this

means that the coefficient σ of the β−3 term in the small-β expansion of the confined-phase

partition function vanishes. This cancellation is enforced by the modular symmetries of

the confined-phase spectrum of large-N theories.

4.3 2D CFT interpretation

The preceding two sections illustrated that the modular properties of the 4D confined-

phase partition functions cause these partition functions to behave as if they correspond

to two-dimensional CFTs. In this section, we shall make this 4D-2D connection sharper.

Specifically, we shall argue that Z4D(τ) = Z2D(τ), where Z4D are the confined-phase gauge

theory partition functions and Z2D(τ) are chiral partition functions of 2D CFTs. This

shows that the 4D and 2D theories have coinciding spectra.

To show this connection we will simply exhibit 2D CFTs whose chiral partition func-

tions coincide with gauge-theory partition functions. Of course, two quantum field theories

can have coincident partition functions while having distinct correlation functions. Given

just the spectral data, it is thus impossible to uniquely determine a 2D CFT associated

with a specific 4D theory. The specific 4D-2D relations we propose below are therefore

to be considered ‘proofs of principle’ that large-N gauge theories are indeed isospectral

to 2D CFTs.

It would be very interesting to understand whether there is a large-N 4D-2D equiv-

alence for correlation functions and not merely for spectra. If such a mapping between

generating functionals of 2D and 4D theories were to exist, it would presumably uniquely

determine the 2D theories appearing in the 4D-2D relation. An exploration of this fasci-

nating and challenging question is outside the scope of the present paper.

4.3.1 Theories with nf = 0 and arbitrary ns

We begin by considering large-N theories with ns adjoint scalars and no fermions. As we

recall, these theories have partition functions given by

Zbosonic
4D (τ ;ns) = η(τ)2 · η(τ)2 · 1

η(τ)
· 2i sin(πbns)e

−iπbnsη(τ)

ϑ
[

1/2

bns + 1/2

]
(τ)

·

[
2η(τ)

ϑ
[
1/2

0

]
(τ)

]1/2

(4.18)

= 1 + nsq + (2 + ns)(3 + ns)q
2 + . . . .
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We now show that these partition functions coincide with the chiral partition functions of

a particular 2D CFT, as advertised in eq. (1.1).

To see this, we first recall that the c = −26 bc-ghost CFT has the chiral partition

function

η(τ)2 = q1/12
(
1− 2q − q2 + . . .

)
. (4.19)

By ‘chiral’ we mean that this partition function tallies contributions from, e.g., right-

moving modes and lacks contributions from left-moving modes. Next, the chiral partition

function of a c = 1 non-compact free scalar CFT is given by

1

η(τ)
= q−1/24

(
1 + q + 2q2 + 3q3 + 5q4 + . . .

)
. (4.20)

We also observe that a c = 1 scalar field with R-NS boundary conditions (that is, a scalar

field which acquires a phase of −1 going around the thermal circle but which is periodic

along the spatial direction) has the chiral partition function [33][
2η(τ)

ϑ
[
1/2

0

]
(τ)

]1/2

= q−1/24
(
1− q − q3 + . . .

)
. (4.21)

Together, these observations account for four of the five factors in eq. (4.18). However,

writing z = e2πibns , we see that the remaining factor in eq. (4.18) can be identified with

the vacuum-sector chiral partition function

2i sin(πbns)e
−iπbnsη(τ)

ϑ
[

1/2

bns + 1/2

]
(τ)

= q−1/12
[
1+(z+z−1)q+(1+z2+z−2+z+z−1)q2+ . . .

]
(4.22)

of the c = 2 bosonic βγ ghost CFT [34]. This irrational logarithmic CFT has a U(1)

conserved charge and associated fugacity z.

Taking a direct product of these five CFTs, we then obtain a 2D CFT with a chiral

partition function

Z2D CFT(τ ;ns) = η(τ)3 2i sin(πbns)e
−iπbnsη(τ)

ϑ
[

1/2

bns + 1/2

]
(τ)

[
2η(τ)

ϑ
[
1/2

0

]
(τ)

]1/2

. (4.23)

We thus have a special case of eq. (1.1),

Zbosonic
4D (τ ;ns) = Z2D CFT(τ ;ns), (4.24)

thereby establishing a spectral equivalence between a confined-phase large-N 4D gauge

theory and a 2D theory.

Note that the parameter ns in the 4D gauge theory maps to a choice of fugacity for

a conserved charge in the 2D theory. The resulting discrete values of the fugacities within

the 2D theory have some remarkable properties. A generic chiral partition function Z2D of

a 2D CFT can be schematically written as

Z2D = q∆
∑
n

(∑
m

cm,nz
m

)
qn, (4.25)

– 25 –



J
H
E
P
0
6
(
2
0
1
6
)
1
4
8

and one expects that cm,n must be integers. For generic values of z, there is no reason to

expect that
∑

m cm,nz
m would be an integer. Yet for the particular values of z relevant

for the equivalence,
∑

m cm,nz
m is an integer. Moreover, the resulting coefficients of q are

non-negative. While the statement that the thermal partition function of a 4D bosonic

gauge theory on S3 × S1 has non-negative integer coefficients in its q-expansion is obvious

from the perspective of the gauge theory, on the 2D CFT side working with z = e2πibns

with bns = 1
2π cos−1(2 + ns/2) corresponds to considering a set of extremely special points

in the space of fugacities.

It is tempting to speculate that these special points in the parameter space of the 2D

CFT are associated with the emergence of enhanced symmetries. Indeed, large-N gauge

theories in the λ → 0 limit are known to have an infinite tower of conserved higher-spin

currents [35, 36]. Thus, it is possible that at these special points the Virasoro symmetry

of the 2D CFT becomes enlarged to a W-symmetry [37]. This is an interesting point to

explore in future work.

4.3.2 Theories with fermionic matter fields

The 2D CFT interpretation for large-N confining theories with generic adjoint matter

proceeds in much the same way as for pure YM theory above. For concreteness, we start

with the twisted partition function with generic nf , ns, which can be written as

Z̃(τ) =
3∏

α=1

[
2e−iπbα cos(πbα) η(τ)2 1

η(τ)

η(τ)

ϑ
[
1/2

bα

]
(τ)

η(τ)

ϑ
[

0

bα

]
(τ)

]
. (4.26)

Each of the factors in the finite-product expression above can be associated with the chiral

partition function of a known 2D CFT, in a sector with given boundary conditions.

The factor of η(τ)2 = q1/12
(
1− 2q − q2 + . . .

)
coincides with the vacuum character of

the c=−26 fermionic bc ghost CFT. The factor of 1/η(τ)=q−1/24(1+q+2q2+3q3+5q4+. . .)

coincides with the vacuum character of the non-compact c = 1 free scalar CFT. Then one

can observe that

2
cos(πbα)

e+iπbα

η(τ)

ϑ
[
1/2

bα

]
(τ)

= 2i
sin(π[bα − 1

2 ])

eπi(bα−
1
2

)

η(τ)

ϑ
[

1/2

(bα − 1/2) + 1/2

]
(τ)

(4.27)

= q−1/12
[
1 + (yα + y−1

α )q + (1 + y2
α + y−2

α + yα + y−1
α )q2 + . . .

]
coincides the vacuum character of the c = 2 bosonic βγ ghost CFT. Note that the flavor

data of the gauge theory enters through the definition of the fugacity yα of the βγ CFT

as yα = e2πi(bα−1/2), which relates to the fugacities defined elsewhere in this paper by

yα = −zα. All of the factors mentioned thus far are invariant under T : τ → τ + 1 and

have q-expansions involving only integer powers of q = e2πiτ .

The remaining factor in eq. (4.26) is different:

η(τ)

ϑ
[

0

bα

]
(τ)

= q1/24
[
1− (z−1

α + zα)q1/2 + (1 + z−2
α + z2

α)q + . . .
]

(4.28)

where zα = e2πibα . However, this expression coincides with the chiral NS-R partition

function of the c = −1 bosonic βγ ghost CFT on the torus [38]. This shows that our
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general relation Z4D = Z2D is actually satisfied for generic ns and nf in the case of large-

N confined-phase S3 × S1 partition functions with periodic boundary conditions. This

demonstration moreover supplies a concrete candidate for the 2D CFT entering eq. (1.3).

Eq. (4.28) is not a character function of the c = −1 ghost CFT because it is not

a T -eigenstate. However, under the T modular transformation we have η(τ)/ϑ
[

0

bα

]
(τ) →

η(τ)/ϑ
[

0

bα + 1/2

]
(τ). From the 4D perspective, this T -translation merely changes boundary

conditions for the adjoint fermions from periodic to anti-periodic. Thus we learn that the

4D thermal partition function can be interpreted with the same 2D product CFT as the

twisted partition function, with the only change being a passage from the NS-R sector to

the NS-NS sector in computing the contribution from the c = −1 bosonic ghost CFT. In

section 5.2, we will show that the modular orbits of 4D gauge theory include R-NS-type

terms as well, in analogy to the 2D Ising model.

Finally, we can consider the S3 × S1 confined-phase large-N partition functions of

supersymmetric theories, taking N = 4 SYM with periodic boundary conditions as a

paradigmatic example:

Z̃κ=3(τ) =
1

η(τ)

(
η(τ)

ϑ
[

0
1
2

]
(τ)

)2
2 cos(πbκ=3)e−iπbκ=3 η(τ)2

ϑ
[

1/2

bκ=3

]
(τ) ϑ

[
0

bκ=3

]
(τ)

. (4.29)

All of the ingredients appearing in the expression above have already been given a 2D CFT

interpretation in our previous examples, except for [η(τ)/ϑ
[

0

1/2

]
(τ)]2 = q1/12(1 + 4q1/2 +

10q + . . .). However this expression coincides with the chiral partition function of a c = 4

CFT composed of two complex scalar fields with NS-R boundary conditions on the torus.

Similar remarks apply to the expression for supersymmetric theories with fewer adjoint

matter supermultiplets, as well as to thermal partition functions.

Thus, for all of the theories studied in this paper, we conclude that the large-N gauge-

theory partition functions coincide with chiral partition functions of 2D CFTs, as advertised

in eq. (1.1). This then generalizes our previous results for pure Yang-Mills theory, as

derived in ref. [4].

5 Characters and modular invariants

In section 3 we showed that the confined-phase partition functions of adjoint-matter large-

N gauge theories on S3 × S1 can be written as combinations of modular forms. Then,

in section 4.3, we provided a 2D CFT interpretations of these 4D partition functions,

thereby establishing our central claim in eq. (1.1). Our goal for this section is to gather

information about the spectra of effective primary operator dimensions h
(eff)
i of the 2D

CFTs that appear in eq. (1.1). To this end, we will compute the diagonal modular invariants

associated to the 2D CFTs appearing in eq. (1.1). This will allow us to compute the values

of h
(eff)
i (mod 1). In all cases (aside from the semi-trivial case of the superconformal

index), we shall find that h
(eff)
i form an infinite set with irrational values. These results

are consistent with our matching of the chiral partition functions to 2D irrational CFTs

in section 4.3.
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5.1 Characters and modular invariants for theories with bosonic matter

In our earlier discussion of large-N gauge theories with ns conformally-coupled massless

adjoint scalar fields and no fermions, we found that the confined-phase partition functions

take the form given in eq. (3.36) and hence have a clear modular structure. However, they

are not modular invariant, and their 2D interpretation is in terms of a chiral sector of a 2D

CFT. Except in the very special context of chiral 2D CFTs, modular invariance in a 2D

CFT requires that we include the contributions of both left and right-moving sectors and

sum over these sectors in a way consistent with the modular symmetries. There can be more

than one consistent way to stitch together the left and right-moving sectors, corresponding

to the possibility of introducing orbifold projections. Here we shall consider the simplest

modular invariant associated to eq. (3.36), namely the diagonal modular invariant.

Given a ‘seed’ chiral partition function Zseed of modular weight k, the corresponding

diagonal modular invariant Zdiagonal can be formally defined as a sum over the modular

images of Zseed:

Zdiagonal(τ)
!

= (Im τ)k
∑

γ∈SL(2,Z)

|Zseed(γ · τ)|2. (5.1)

We shall employ the symbol
!

= to emphasize that the right sides of such equations may

require a regularization consistent with the modular symmetries in order to make the

relation precise. This will be discussed further below. Note the factor of (Im τ)k in eq. (5.1)

can be thought of as the contribution to Zdiagonal of the zero-mode excitations of the CFT

(which are neither left- nor right-moving), and must be present for Zdiagonal(τ) to be fully

modular invariant. Once we know the form of Zdiagonal for a CFT, it will be straightforward

to extract information about the corresponding primary operator spectrum.

In the most familiar cases, such as those involving the CFTs corresponding to the

so-called “minimal models”, there are an infinite number of elements γ which map the

seed term Zseed to itself. This will happen if Zseed is built from, e.g., Dedekind η functions

and Jacobi ϑ
[
a

b

]
functions with rational characteristics a, b ∈ Q. In such cases, the set of

modular transformations γ has a natural decomposition into equivalence classes, defined

such that any two elements γ1, γ2 of SL(2,Z) belong to the same equivalence class if they

have the same action on Zseed, with Zseed(γ1 · τ) = Zseed(γ2 · τ). This redundancy leads

to a divergence in the naive expression in eq. (5.1), since the size of each equivalence class

is generally infinite. In such cases we must instead choose a single representative from

each distinct equivalence class in defining Zdiagonal in order to obtain a convergent version

of eq. (5.1), and this may be considered to be a kind of regulator. However, in our case,

Zseed(τ) = Z(τ ;ns) contains a ϑ function with an irrational characteristic. This in turn

implies that each element of SL(2,Z) will have a unique action on Z(τ ;ns). Consequently

the sum in eq. (5.1) will contain an infinite number of distinct terms, and we will not have

to worry about splitting the modular orbit of Zseed into equivalence classes and picking

representatives. Indeed, all of the terms in the modular orbit of Zseed will be needed in

order to construct the diagonal invariant.
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To give an explicit description of the diagonal invariant, we construct a set of ob-

jects {Zm,n}, where the indices m,n are relatively prime integers, that have the following

properties:

(a) Each element Zm,n is built out of a finite product of modular functions with modular

weight k = 3/2.

(b) The element Zm,n reduces to the QFT partition function when m = 0, n = 1 so that

Z0,1(τ ;ns) = Zbosonic(τ ;ns) (5.2)

(c) The set {Zm,n} is closed under the action of the modular group, in the sense that

Zm,n(−1/τ ;ns) = (−iτ)3/2sm,nZ−n,m(τ ;ns)

Zm,n(τ + 1;ns) = tm,nZm,m+n(τ ;ns), (5.3)

where sm,n and tm,n are pure phases which do not depend on τ , and there is a one-to-

one mapping of the action of SL(2,Z) on the argument τ to an action on the indices

m,n of the elements of the set {Zm,n(τ)}. This means that if we view the indices

m,n as the components of a column vector, then up to a factor of (−iτ)3/2 each

element of SL(2, Z) acts by matrix multiplication on this column vector.

In the rest of this section, we will mostly use notation where the dependence of Zm,n on

ns is suppressed, so that Zm,n(τ ;ns) is abbreviated as Zm,n(τ).

We define the elements of the set {Zm,n(τ)} as

Zm,n(τ) ≡ −[2 + ns]
1/2η(τ)4

eiπn bnsϑ
[
mbns + 1/2

n bns + 1/2

]
(τ)

[
2η(τ)

ϑ
[
P (m)/2

P (n)/2

]
(τ)

]1/2

, (5.4)

where

P (m) ≡ 1

2
[1 + (−1)m] =

{
1 m even

0 m odd.
(5.5)

With this definition of Zm,n(τ), condition (a) is clearly satisfied, and so is condition (b),

because by construction Z0,1(τ) = Zbosonic(τ).

We now observe that condition (c) is also satisfied. First, using the identities collected

in appendix A, as well as the identity

P (n) + P (m) + 1 = P (m+ n) (mod 2) , (5.6)

we find that the S-transformation rule is given by

Zm,n(−1/τ ;ns) = (−iτ)3/2e2πi(mnb2ns+1/4)Z−n,m(τ ;ns) . (5.7)

Since b2ns is a real number, this means that sm,n = e2πi(mnb2ns+1/4) is indeed a pure

phase, verifying eq. (5.3). Similar manipulations show that the T -transformation rule

for Zm,n(τ) is

Zm,n(τ + 1) = eπi{[1−P (m)]/8−m2(bns )2}Zm,n+m , (5.8)

so that tm,n = eπi{[1−P (m)]/8−m2(bns )2} is also a pure phase. (An explicit proof of this fact

is contained within appendix C.)
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We now observe that the integers (0, 1) labeling the seed term are relatively prime.

Likewise, if (m,n) are relatively prime, then so are (−n,m) and (m,m + n). This means

that the modular orbit of the seed term is contained within the set of pairs of co-prime

integers. In fact, any co-prime pair (m,n) can be mapped back to (0, 1) by some element

M of PSL(2,Z), so that the modular orbit requires all relatively prime pairs (m,n). To

see this, let (m,n) be an arbitrary co-prime pair. Our goal is then to solve for the matrix

M for which

M ·

(
m

n

)
≡

(
a b

c d

)
·

(
m

n

)
=

(
am+ bn

cm+ dn

)
=

(
0

1

)
. (5.9)

To solve for M , we first observe by Bézout’s lemma that for any coprime (m,n) there exist

integers (c, d) such that cm+ dn = 1. However, once suitable integers (c, d) are chosen, we

must also ensure that am+ bn = 0. This is solved by setting a = nk, b = −mk, for k ∈ Z.

Hence a, b, c, d are determined up to an integer k. The condition detM = 1 then implies

1 = [nkd− (−mk)c], and this fixes k = 1. Thus M is indeed an element of PSL(2,Z). This

then completes the demonstration of statement (c): the set {Zm,n(τ)|m ⊥ n ∈ Z} is closed

under modular-group transformations, where the notation m ⊥ n indicates that m and n

are coprime.

If bns had been rational, our verification of condition (c) above would have gone through

without change. The only difference would have involved the structure of the modular

orbits. If bns had been rational, after some finite number of applications of S and T to Z0,1

we would have returned to Z0,1. We would then have needed to break the set {Zm,n,m ⊥ n}
into equivalence classes and take a single representative from each equivalence class. This

would have resulted in a finite number of modular orbits. However, as we already mentioned

above, bns is irrational for all non-negative integers ns. This means that the modular orbit

of Z0,1 is infinite-dimensional, and each distinct pair of coprime integers (m,n) is associated

with a distinct element Zm,n of the orbit.

Armed with these observations, we can write down the minimal modular completion

of the seed term:

Zdiagonal(τ ;ns) = (Im τ)3/2
∑
m⊥n
|Zm,n(τ ;ns)|2 . (5.10)

One may wonder whether the infinite sum over m and n converges for τ ∈ H and non-

negative integers ns. Our numerical evidence suggests that the sum converges at generic

points in the complex-τ half-plane H, except for an isolated set of points associated to

Hagedorn singularities. The numerical values of Zdiagonal(τ ;ns = 0) as a function of a

cutoff on the sum over Zm,n are illustrated in figure 3.

The fact that Zdiagonal(τ ;ns) includes the seed term Z0,1, is modular invariant, and

composed of absolute values of Zm,n implies that Zdiagonal(τ ;ns) has many more Hagedorn

singularities than Z0,1. Indeed, we already know that Z0,1(τ ;ns) has an isolated set of

Hagedorn singularities, for instance along the interval (0, 1) of the q-disk, with an accu-

mulation point at q = 1. But the S-modular image of Z1,0, which is of course included

in Zdiagonal(τ ;ns), must then have a set of Hagedorn singularities on q ∈ (0, 1) with an

accumulation point at q = 0. In this way, the S- and T - transformations produce SL(2,Z)

images of the Hagedorn singularities of the seed term Z0,1 throughout the upper half-plane.
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Figure 3. Left: values of Zdiagonal(τ ;ns = 0), corresponding to pure Yang-Mills theory, evaluated

with a cutoff |m|, |n| < 10 on the sum in eq. (5.10) and plotted within the unit q-disk. Right: the

overlay of the same plot with the tessellations generated by the modular transformations.

The singularities of Zm,n(q) are identified with the zeroes of the theta function in the

denominator of eq. (5.4). Using the triple-product representations in eq. (A.6), we see that

the singularities are simple poles located at

q
(m,n)
? = exp

(
2πi

ni|b|+ k

−mi|b|+ l

)
, k, l ∈ Z (5.11)

with the restriction that q
(m,n)
? lies inside the unit circle. In writing this expression we used

the fact that b = 1
2π cos−1(2 +ns/2) = +i|b|. In the complex τ -plane these singularities are

mapped to

τ
(m,n)
? =

ni|b|+ k

−mi|b|+ l
, k, l ∈ Z . (5.12)

This expression is expected in the following sense. The seed partition function Z0,1 has

Hagedorn singularities at τ = i|b|/q with q ∈ Z+. General modular transformations map

this set of seed singularities to the set in eq. (5.12). It is relatively simple to show that

since (m,n) are relatively prime, no Zm,n(τ) share poles.

Moving forward, we would like to extract the spectrum of (effective) conformal di-

mensions in the full modular 2D CFT. General 2D CFT considerations indicate that the

eigenvalues of the modular T : τ → τ + 1 operator encode data concerning the spectrum

of primary operators of the CFT. If the scaling dimensions are real, the eigenvalues of T

will be pure phases, and the set of these eigenvalues can be written as{
e2πi h

(eff)
k

}
(5.13)

where k is an index parametrizing the elements of the set. In the simplest examples, such

as minimal-model CFTs, k takes a finite number of values. However, in the more generic

case of irrational CFTs, k may be drawn from an uncountably infinite set. The spectrum

of primary operators is encoded in the values of h
(eff)
k , which are related to the scaling

dimensions of the primary operators hk via

h
(eff)
k = hk − c/24 (mod 1) . (5.14)
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Here c is the central charge of the 2D CFT. Thus, if we could compute the eigenvalues of

T , we could determine h
(eff)
k (mod 1):

Eigenvalues of T ⇐⇒ h
(eff)
k (mod 1) . (5.15)

Note that without further assumptions, the eigenvalues of T allow us to determine h
(eff)
k only

up to shifts by integers; moreover the calculation cannot determine hk and c separately.

If one were to further assume that the underlying 2D CFT is unitary, then one would

know that min{hk} = 0. The lowest value of h
(eff)
k would then yield c on its own, which

would in turn allow us to determine the spectrum of values of {hk}, up to integer shifts.

Unfortunately, there is ultimately no compelling reason to expect our CFTs to be unitary.

Indeed, such an assumption would not be consistent with our proposed identification of

these 2D CFTs as containing logarithmic sectors, as outlined in section 4.3.

Our task is now to construct eigenstates of T : τ → τ +1. Since T is a discrete transla-

tion operator in the complex τ -plane, the construction of T -eigenstates closely parallels the

construction of Bloch-wave eigenstates for particles in periodic potentials. To write explicit

expressions for the eigenstates, we first observe that the T -transformation leaves the first

index of Zm,n invariant, T : m → m, while it acts on the second index as T : n → n + m.

But any n which is coprime to m can be written as km+ ` for some k ∈ Z and an integer

` satisfying 0 ≤ ` < |m|. Thus, given a fixed index m, the set {Zm,n} can be decomposed

into ϕ(m) ‘blocks’, parametrized by `, which do not mix with each other under the action

of T . Given this observation, it is then easy to see that the eigenstates are built from linear

combinations of {Zm,n} which are labeled by m, `, and a Bloch ‘angle’ α. Explicitly, we

find that

χm,`,α(τ) =

+∞∑
k=−∞

e2πiαkZm,km+`(τ) , (5.16)

are eigenstates of T , and obey the relation

χm,`,α(τ + 1) = e2πih
(eff)
m,`,αχm,`,α(τ) (5.17)

where

h
(eff)
m,`,α (mod 1) =

1

2

(
1− P (m)

8
+m2|bns |2

)
− α. (5.18)

The set {χm,`,α(τ)} is a complete basis for the eigenstates of T , as can be checked by

verifying that summing |χm,`,α(τ)|2 over the labels m, `, α reproduces the diagonal modular

invariant:

Zdiagonal(τ ;ns) = (Im τ)3/2
∑
m∈Z

∑
0≤`<|m|
`⊥m

∫ 1

0
dα |χm,`,α|2. (5.19)

This confirms that the quantities in eq. (5.18) are the set of scaling dimensions of

primary operators (mod 1) of any 2D CFT which is isospectral to 4D large-N gauge theory

with ns adjoint conformally-coupled massless scalar fields in the confined phase on S3×S1.

Note that h
(eff)
m,`,α (mod 1) does not depend on `, but does depend on α, which is a continuous

variable. This quantity also depends on |b|2, which is irrational. Moreover, the value of α
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is independent of b. Thus the scaling dimensions h(eff) are irrational, and consequently any

2D CFT which is isospectral to this class of confining large-N 4D gauge theories must be

an irrational CFT [39, 40]. This result is consistent with our identification of the candidate

2D CFTs in section 4.3.1.

5.2 Characters and modular invariants for theories with fermionic matter

Gauge theories with fermionic matter have more complicated modular structures than

those with purely bosonic matter, for the following reasons. First, there are two different

types of boundary conditions for fermions on the S1, periodic and anti-periodic. Second,

T -translations exchange these boundary conditions, because fermionic states have half-

integral energies in units of 1/R, and T maps qn/2 to (−1)nqn/2. In other words, the

modular completions of 4D large-N gauge theories with fermionic matter content neces-

sarily include both periodic and anti-periodic boundary conditions.

For simplicity, we will focus our discussion on generic matter content nf and ns. While

supersymmetric matter content simplifies the individual modular structure of the seed

terms, it does not significantly alter the general form of the orbits when the modular

parameter is identified as q = e−β/R = e2πiτ . (Things are different if one defines the

modular parameter via e−β/(2R) = e2πiτ̃ , as discussed in appendix D.)

As we will focus our attention on the non-supersymmetric cases, we directly study the

modular orbits of the expressions in eqs. (3.20) and (3.24). Our goal is to find the general

class of modular objects that naturally include these expressions. The construction is very

similar to that in section 5.1, and just as in that section it is helpful to focus on the parts

of these expressions which contain theta functions with the non-trivial, i.e., complex and

transcendental, characteristics. Hence, we focus on the modular orbits of

TA0,1(τ) =

3∏
α=1

e−iπbα η(τ)

ϑ
[
1/2

bα

]
(τ)

η(τ)

ϑ
[

0

bα

]
(τ)

TB0,1(τ) =

3∏
α=1

e−iπbα η(τ)

ϑ
[
1/2

bα

]
(τ)

η(τ)

ϑ
[

0

bα + 1
2

]
(τ)

, (5.20)

where TA0,1(τ) originates from the twisted partition function in eq. (3.20) while TB0,1(τ)

originates from the thermal partition function in eq. (3.24). To do this, we begin by

defining three infinite families of terms TAm,n(τ), TBm,n(τ), and TCm,n(τ):

TAm,n(τ) =
3∏

α=1

e−iπnP (m)bα η(τ)

ϑ
[
mbα + P (m)/2

nbα + P (n)/2

]
(τ)

e−iπnP̄ (m)bα η(τ)

ϑ
[
mbα + P̄ (m)/2

nbα + P̄ (n)/2

]
(τ)

TBm,n(τ) =

3∏
α=1

e−iπnP (m)bα η(τ)

ϑ
[
mbα + P (m)/2

nbα + P (n)/2

]
(τ)

e−iπnP̄ (m)bα η(τ)

ϑ
[
mbα + P̄ (m)/2

nbα + P (n)/2

]
(τ)

TCm,n(τ) =

3∏
α=1

e−iπnP (m)bα η(τ)

ϑ
[
mbα + P (m)/2

nbα + P (n)/2

]
(τ)

e−iπnP (m)bα η(τ)

ϑ
[
mbα + P (m)/2

nbα + P̄ (n)/2

]
(τ)

. (5.21)
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where m and n run over the full set of relatively prime integers and where, in close analogy

with the functionP (m) defined in eq. (5.5), we have now additionally defined

P̄ (m) ≡ 1

2
[1− (−1)m] =

{
0 m even

1 m odd.
(5.22)

Under the T modular transformation, we find

T : TAm,n(τ)→ TBm,n+m(τ)
3∏

α=1

exp

[
iπ

{(
m2b2α +

P (m)

4

)
+

(
m2b2α +

P̄ (m)

4

)}]

T : TBm,n(τ)→ TAm,n+m(τ)

3∏
α=1

exp

[
iπ

{(
m2b2α +

P (m)

4

)
+

(
m2b2α +

P̄ (m)

4

)}]

T : TCm,n(τ)→ TCm,n+m(τ)
3∏

α=1

exp

[
iπ

{(
m2b2α +

P (m)

4

)
+

(
m2b2α +

P (m)

4

)}]
. (5.23)

The proof of the results in eq. (5.23) depends on the identities

P̄ (a) + P (b) + 1 = P̄ (a+ b) (mod 2)

P̄ (a) + P̄ (b) + 1 = P (a+ b) (mod 2)

P (a) + P̄ (b) + 1 = P̄ (a+ b) (mod 2) (5.24)

in addition to the identity in eq. (5.6). By contrast, the S modular transformation shuffles

the characters in a slightly different way:

S : TAm,n(τ)→ TA−n,m(τ)
3∏

α=1

exp

[
−2iπ

{(
mnb2α

)
+

(
mnb2α +

P̄ (m)P̄ (n)

4

)}]

S : TBm,n(τ)→ TC−n,m(τ)

3∏
α=1

exp

[
−2iπ

{(
mnb2α

)
+

(
mnb2α +

P̄ (m)P (n)

4

)}]

S : TCm,n(τ)→ TB−n,m(τ)

3∏
α=1

exp

[
−2iπ

{(
mnb2α

)
+

(
mnb2α +

P (m)P̄ (n)

4

)}]
. (5.25)

We thus see that the objects TAm,n(τ), TBm,n(τ), and TCm,n(τ) in eq. (5.21) map into each

other under the S- and T -transformations in eqs. (5.23) and (5.25). Indeed, their S- and T -

transformation rules are exactly the same as those experienced by the 2D massless fermion

characters with NS-R, R-NS, and NS-NS boundary conditions, respectively.

Importantly, the integers (m,n) that characterize a given modular image of a seed

term behave in the same way for bosonic and fermionic large-N gauge theories. In other

words, we again find that T : (m,n)→ (m,n+m) and S : (m,n)→ (n,−m) in eqs. (5.23)

and (5.25) for generic (nf , ns), just as we found previously in eq. (5.3) for the purely bosonic

case when nf = 0 with arbitrary (positive, integer) ns. Moreover, we have numerically

verified that the phases under S- and T -transformations in eqs. (5.23) and (5.25) are indeed

pure phases, with modulus one. Thus, we can recycle the logic from the purely bosonic case
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to conclude that modular images of the seed term exist for every pair of coprime integers

(m,n). The complete modular invariant for generic (nf , ns) is thus the sum of the squared

moduli of the modular images of the seed terms:

Zdiagonal(τ ;nf , ns) = (Im τ)3/2
∑

k∈{A,B,C}

∑
m⊥n
|Zkm,n(τ)|2 , (5.26)

where Zkm,n(τ ;nf , ns) is simply T km,n(τ ;nf , ns)
∏3
α=1 2 cos(πbα)η(τ), as is needed to match

the seed terms in eqs. (3.20) and (3.24).

The decomposition of the expression in eq. (5.26) into T -eigenstates goes through in the

same manner as for purely bosonic theories, with one structural difference. The difference

arises because there are now three sets of terms in the modular orbit, and T -translations

map elements of {TAm,n(τ)} into elements of {TBm,n(τ)} and vice versa, while they map

elements of {TCm,n(τ)} amongst themselves. As a result, we find that the T -eigenstates can

be written as:

χI
m,l,α(τ) =

∑
k∈Z

e2πiαk 1√
2
ZCm,k·m+`(τ)

χII
m,l,α(τ) =

∑
k∈Z

e2πiαk 1√
2

[
ZAm,k·m+`(τ) + ZBm,k·m+`(τ)

]
χIII
m,l,α(τ) =

∑
k∈Z

e2πiαk 1√
2

[
ZAm,k·m+`(τ)− ZBm,k·m+`(τ)

]
. (5.27)

This complete, orthonormal basis of T -eigenstates allows us to rewrite the modular com-

pletion of the 4D QFT partition function as

Zdiagonal(τ ;nf , ns) = (Im τ)3/2
∑

k∈{I, II, III}

∑
m∈Z

∑
0≤`<|m|
`⊥m

∫ 1

0
dα |χkm,`,α|2 . (5.28)

The structural parallels between this expression and the expressions we found in purely

bosonic theories can be used to verify that the T -eigenvalue phases h
(eff)
k are drawn from a

continuous set and are irrational. Consequently, any 2D CFT which is isospectral to large-

N confined-phase gauge theories with fermions must be irrational. This is again consistent

with our identification of the candidate 2D CFTs in section 4.3.2.

6 Discussion

Our goal in this work has been to understand whether there may be interesting emergent

symmetries organizing the spectra of large-N confining theories. We explored this question

in the context of large-N gauge theories with massless matter on S3
R×S1

β , and used RΛ as

a control parameter in order to restrict our attention to the regime RΛ → 0, where these

theories become solvable at large N .

We found that in this setting the confined-phase partition functions of large-N gauge

theories with massless adjoint matter on S3 × S1 are (meromorphic) modular forms. Our

results generalize our earlier findings from ref. [4] for pure Yang-Mills theory to theories with

matter, and hold for both thermal and (−1)F -twisted partition functions. Consequently, we

were able to show that the confined-phase spectra of adjoint-matter gauge theories coincide
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with the spectra of chiral sectors of certain 2D CFTs. This means that the spectra of large-

N confining theories are organized by the symmetries of 2D CFTs, at least in the limit

we considered.

It is important to emphasize that our results use the large-N limit in an essential way.

Perhaps the simplest way to appreciate this is to recall that from start to finish, we work

in finite spatial volume. (To avoid possible confusion, we note that the S3 volume is always

strictly finite in units of the S1 size β. For most of the theories we consider, there is also a

strong scale Λ, and we work in a zero-volume limit with respect to Λ, so that RΛ→ 0.) For

finite N and finite volume, there is no sharp distinction between confined and deconfined

phases, nor can there be any non-analyticities in the partition function. As discussed in

ref. [6], non-analyticities such as Hagedorn poles can appear only in systems with an infinite

number of degrees of freedom. Thus, while non-analyticities can appear in infinite-volume

theories at any N , at finite volume non-analyticities can only arise in the infinite-N limit.

Consequently, a finite-N thermal partition function Z necessarily contains contributions

from both the confined and deconfined “phases”, and is smooth as a function of β. But

at small β, it is then unavoidable that the behavior of Z will be that of the deconfined

“phase”, and logZ will diverge as β−3. In view of the general arguments we have advanced

here, this implies that finite-N thermal partition functions Z cannot be written in terms

of modular forms. Thus, within the setting we consider, modularity can only emerge at

large N . The fact that modularity only appears at large N is actually encouraging in

view of our original motivation of understanding the large-N spectrum — it means that

the symmetries implied by the modularity are a consequence of the large-N limit, and not

purely due to the λ→ 0 limit we employed in order to perform our calculations.

6.1 Relation to prior work

Our results are not the first concerning relations between 4D and 2D theories. It is therefore

important to understand the relevance of our work within the context of previous results.

In several ways, our results resemble those of ref. [18], where it was shown that certain

special partition functions (‘Schur indices’) of N = 2 supersymmetric gauge theories are

controlled by 2D chiral algebras and thus have modular properties [19–22], even at finite

N . The common elements between our results and those of ref. [18] are that the 2D CFTs

relevant for ref. [18] are generally non-unitary and logarithmic, as has also been the case

for us. Furthermore, the 4D partition functions considered in ref. [18] coincide with chiral

characters of these 2D CFTs, which also matches what we find. These points of agreement

lead us to suspect that there may be important relations between our results and those of

ref. [18] and other works on the modular structure of Schur indices.

However, there are also some major differences between, e.g., ref. [18] and our results.

The construction employed within ref. [18] leverages supersymmetry in an essential way by

noting that the only states that make non-cancelling contributions to Schur indices live on

a two-dimensional plane. Once this feature of Schur indices is recognized, the appearance of

a 2D chiral algebra organizing the spectrum of states contributing to these indices becomes

natural. In contrast, supersymmetry is irrelevant to our construction: indeed our analysis

applies to not only twisted partition functions, but also thermal partition functions, where
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all states contribute with the same sign and, thus, cannot cancel against each other. As

a result, our 4D-2D relations apply to all finite-energy states of the 4D large-N theory,

and not just a subset which propagates in a two-plane. Viewed from this perspective, the

conceptual origin of the 2D description of our partition functions is much more mysterious

than that in ref. [18]. Finally, our results apply only for large N , while the results of ref. [18]

apply for any finite N .

We also note that the modular properties of d-dimensional quantum field theories were

recently discussed in ref. [41]. However, the focus in ref. [41] was on theories compacti-

fied on T d. This makes the analysis and implications very different from those discussed

in this paper.

6.2 Open questions

Our results suggest a large number of interesting questions:

• It is important to explore the connection between our results and string-theoretic

expectations. From string theory, one might have expected that the single-particle

spectrum would have a description in terms of vibrations of a string. The physics

of a single string has a worldsheet CFT description. Consequently, one might have

expected that the single-particle spectrum (which is just the single-trace spectrum)

of a large-N gauge theory would have the simplest 2D CFT description, if one were

possible. However, in contrast to this naive expectation, we have found that it is the

grand-canonical partition function — the partition function which contains contribu-

tions from all multi-trace states — that has a simple 2D CFT description. Another

potential issue is that a modular structure is required for the worldsheet partition

function of a string theory, and the worldsheet and spacetime partition functions do

not normally coincide. Yet one might expect that the field-theory partition func-

tion would be related to the spacetime partition function of the string theory (in

a holographic way). These issues make a stringy interpretation of our results an

interesting challenge.

• As remarked above, it is important to try to understand the meaning of Re τ on the 4D

sides of our 4D-2D equivalences. Within 2D CFT chiral partition functions, turning

on Re τ 6= 0 corresponds to turning on a chemical potential for angular momentum

on the spatial cycle of the torus. Equivalently, turning on Re τ amounts to counting

states in the partition function with a twist related to their angular momentum.

In our 4D theories, in the limit λ→ 0, the energy E of a generic multiparticle states

happens to coincide with their total angular momentum J . Both E and J are con-

served quantities which are bounded from below. Turning on Re τ 6= 0 can thus be

interpreted as twisting the 4D partition function by either of these conserved quanti-

ties. Sometimes such twists coincide with standard notions. For instance, in theories

with fermions, τ → τ + 1 changes the fermion boundary conditions from periodic to

anti-periodic. While twists by E or J seem well defined from a statistical-mechanics

perspective, it is not clear to us how to interpret such operations within a Euclidean

path integral formulation of a quantum field theory. Thus, for now, it is probably
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safest to view turning on Re τ 6= 0 as an analytic continuation of the 4D partition

function. Analytic continuation of path integrals (and hence partition functions) has

recently been the focus of many works; see, e.g., refs. [42–46]. Nevertheless, it would

be satisfying to find a direct physical interpretation of moving along the Re τ axis in

the 4D theory.

• A possibly related issue is to find a 4D gauge-theory interpretation of the modular

images of the 4D partition functions. It seems conceivable that more generally, the

modular images of the confined-phase partition functions could be obtained by com-

puting partition functions with background fields turned on, perhaps fields coupling

to some extended operators.3 It is also possible that understanding the modular im-

ages of the 4D partition functions might help in understanding the meaning of Re τ ,

because even if τ starts on the imaginary axis, modular transformations can map it

to many locations within the complex plane.

• Two-dimensional CFTs have symmetry algebras that include the Virasoro algebra.

Our 4D-2D correspondence then suggests that the symmetries of 4D confining theo-

ries should include a Virasoro symmetry acting on the spectrum. It would be very

interesting to show this explicitly within the 4D theory, and to explicitly exhibit the

symmetry generators in terms of the fields of the 4D theory.

• As suggested by the analysis of refs. [35, 36], we expect that our 4D gauge theories

have an infinite tower of higher-spin conserved currents in the λ → 0 limit. This

makes it important to understand whether the 2D CFTs appearing in our 4D-2D

relation also have a tower of conserved higher-spin currents, which would mean that

their symmetries involve W-algebras.

• It would be very interesting to extend our spectral 4D-2D equivalence to include

correlation functions as well. If this turns out to be possible, a dictionary relating

correlation functions in 4D and 2D would presumably shed light on the otherwise

mysterious fact that the 2D CFTs we wrote down are non-unitary.

• It may also be important to determine whether there is a connection between the

modular properties of the N = 4 SYM thermal partition function and the Yangian

spectrum-generating algebra of N = 4 theory [47]. If there is such a connection,

it could have important implications for understanding whether integrability of the

planar spectral problem might extend to some non-supersymmetric large-N theories.

• Finally, perhaps the most important issue is to understand what happens to our

4D-2D equivalence away from λ = 0. If the modular structure of the partition

functions generalizes in some fashion to finite λ, this would have potentially important

implications for the symmetries of confining gauge theories at generic values of RΛ.

To understand whether this is possible, it may be helpful to first understand how

the 4D-2D relation generalizes to correlation functions. This might then enable the

development of a mapping between the finite-λ deformation of the 4D theories and

some equivalent deformation of the 2D theories.

3We thank Chris Beem for comments on this issue.
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This list of open questions just scratches the surface of this topic. We hope that

explorations of some of these issues will lead to a better understanding of confining

gauge theories.
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A Conventions for modular and elliptic forms

Our conventions4 for the Jacobi theta-functions are given by

θ1(z, τ) ≡ −i
∑
n∈Z

(−1)nζn+1/2q
(n+1/2)2

2

θ2(z, τ) ≡
∑
n∈Z

ζn+1/2q
(n+1/2)2

2

θ3(z, τ) ≡
∑
n∈Z

ζnq
n2

2

θ4(z, τ) ≡
∑
n∈Z

(−1)nζnq
n2

2 (A.1)

where

ζ ≡ e2πiz , q ≡ e2πiτ . (A.2)

These functions transform under modular transformations T : τ → τ+1 and S : τ → −1/τ

according to

θ1(z, τ + 1) = eiπ/4θ1(z, τ), θ1(z,−1/τ) = i
√
−iτeiπτz2

θ1(−τz, τ)

θ2(z, τ + 1) = eiπ/4θ2(z, τ), θ2(z,−1/τ) =
√
−iτeiπτz2

θ4(−τz, τ)

θ3(z, τ + 1) = θ4(z, τ), θ3(z,−1/τ) =
√
−iτeiπτz2

θ3(−τz, τ)

θ4(z, τ + 1) = θ3(z, τ), θ4(z,−1/τ) =
√
−iτeiπτz2

θ2(−τz, τ) . (A.3)

4These conventions follow those of chapter 7, section 2, of ref. [48].
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A shorthand notation for the ζ = 0 special case is θi(τ) ≡ θi(0, τ). The Jacobi functions

have infinite-product representations given by

θ1(z, τ)

2q
1
8 sinπz

=

∞∏
n=1

(1− qn)(1− 2qn cosπ2z + q2n) =

∞∏
n=1

(1− qn)(1− qnζ)(1− qn/ζ)

θ2(z, τ)

2q
1
8 cosπz

=
∞∏
n=1

(1− qn)(1 + 2qn cosπ2z + q2n) =
∞∏
n=1

(1− qn)(1 + qnζ)(1 + qn/ζ)

θ3(z, τ) =

∞∏
n=1

(1−qn)(1+2qn−
1
2 cosπ2z+q2n−1) =

∞∏
n=1

(1−qn)(1+qn−
1
2 ζ)(1+qn−

1
2 /ζ)

θ4(z, τ) =
∞∏
n=1

(1−qn)(1−2qn−
1
2 cosπ2z+q2n−1) =

∞∏
n=1

(1−qn)(1−qn−
1
2 ζ)(1−qn−

1
2 /ζ)

(A.4)

We next define the generalized theta-function ϑ
[
α

β

]
(τ):

ϑ
[
α

β

]
(τ) ≡

∑
n∈Z

e2πinβq
(n+α)2

2 . (A.5)

These functions also have a triple-product form:

ϑ
[
α

β

]
(τ) = eiπτα

2
∞∏
n=1

(1− e2iπτn)(1 + e2iπτ(n− 1
2

+α)+2iπβ)(1 + e2iπτ(n− 1
2
−α)−2iπβ)

= qα
2/2

∞∏
n=1

(1− qn)(1 + qn−
1
2

+αe2iπβ)(1 + qn−
1
2
−αe−2iπβ) . (A.6)

The standard Jacobi theta-functions θi(z, τ) can be written in terms of ϑ
[
α

β

]
(τ) as

θ1(z, τ) = −ieiπzϑ


1

2

z +
1

2

(τ)

θ2(z, τ) = eiπzϑ
 1

2
z

(τ)

θ3(z, τ) = ϑ
[
0

z

]
(τ)

θ4(z, τ) = ϑ
 0

z +
1

2

(τ) . (A.7)

The generalized theta-function satisfies the identities

ϑ
[
α + 1

β

]
(τ) = e−2iπβϑ

[
α

β

]
(τ)

ϑ
[

α

β + 1

]
(τ) = ϑ

[
α

β

]
(τ)

ϑ
[
−α
−β

]
(τ) = ϑ

[
α

β

]
(τ) , (A.8)

and transforms under T and S as

ϑ
[
α

β

]
(τ + 1) = eiπα

2
ϑ
 α

β + α +
1

2

(τ)

ϑ
[
α

β

]
(−1/τ) =

√
−iτ e−2πiαβϑ

[
−β
α

]
(τ) . (A.9)
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The T -transformation follows straightforwardly from eq. (A.5). We emphasize that these

expressions are valid for arbitrary complex α and β, as can be verified by, e.g., deriving

the S-transformations using the Poisson summation formula.

Finally, the Dedekind eta-function is defined as

η(τ) ≡ q
1
24

∞∏
n=1

(1− qn) . (A.10)

This transforms as

η(τ + 1) = eiπ/12η(τ)

η(−1/τ) =
√
−iτ η(τ) (A.11)

and exhibits the double-argument relations

η(2τ) =
η2(τ)

(θ4(τ)θ3(τ))
1
2

=
η2(τ)(

ϑ
[

0
1
2

]
(τ)ϑ

[
0

0

]
(τ)
) 1

2

=
1√
2

[
ϑ
 1

2
0

(τ)η(τ)

] 1
2

. (A.12)

B Roots for generic ns, nf

To find expressions for the roots of P (q) for generic ns, nf , we write

P (q) =
3∏
i=1

(1 +Riq + q2) (B.1)

and look for Ri = ri + r−1
i such that

P (q) = 1− 3q2 − nsq2 + 4nfq
3 − 3q4 − nsq4 + q6. (B.2)

Matching powers of q and solving the resulting set of three equations yields

R1 = −B +X2/3

√
3 3
√
X

R2 =

√
3 3
√
X
(
B +X2/3

)
+ 3
√

2AX +B3 −B2X2/3 + 2BX4/3

6X2/3

R3 =

√
3 3
√
X
(
B +X2/3

)
− 3
√

2AX +B3 −B2X2/3 + 2BX4/3

6X2/3
(B.3)

where

A = 6
√

3nf , B = 6 + ns , X =
√
A2 −B3 −A . (B.4)

These expressions are valid for any ns, nf . However, as mentioned in the main text,

for certain select values of ns, nf , there are dramatic simplifications, with some roots be-

coming 1. This is the fundamental reason why SUSY theories have different, and slightly

simpler, modular structures than their non-SUSY cousins. For instance, for the theory

with N = 4 SYM matter content, we find

ns = 6, nf = 4 : (R1, R2, R3) = (−2,−2, 4), (B.5)

so that

P (q)
∣∣
N=4

= (1− 2q + q2)2(1 + 4q + q2) = (1− q)4(1 + 4q + q2). (B.6)
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C Simplifications at nf = 0

In this appendix, we show how the formulas derived in sections 3.2.1 and 3.2.2 — formulas

which hold for any non-supersymmetric choice of ns and nf , including nf = 0 — match the

seemingly different expressions we obtained in section 3.4 for theories with purely bosonic

matter content.

We begin by noting how the modular-form expressions, derived for generic nf and ns,

simplify when nf = 0. First, we rewrite the defining polynomial for the purely bosonic

theories in terms of the variable Q2 ≡ q:

P (q) = (1 + q)(1− (4 + ns)q + q2)

= (1 + q)(q − z(A))
∣∣
A=+1

(q − z(A))
∣∣
A=−1

(C.1)

where

z(A) =
(

2 +
ns
2

)
+A

√(
2 +

ns
2

)2
− 1 . (C.2)

In eq. (C.2) we see how the Q-variable polynomial factorizes; indeed we have z(+1)z(−1)=1.

In terms of q, we then obtain

Pboson(Q) = (Q+ i)(Q− i)
∏
A=±1

(
Q+ i

√
z(A)

)(
Q+

1

i
√
z(A)

)

= (Q− i)(Q+ i)
∏
A=±1

(
Q− i

√
z(A)

)(
Q− 1

i
√
z(A)

)
. (C.3)

Note that the two lines in eq. (C.3) differ by sign choices but nevertheless multiply out to

the same expression. This sign ambiguity is related to the ambiguity in extracting a sign

for Q from q, given that q = (−Q)2 = (+Q)2.

Given these observations, we can rewrite the large-N partition function for purely-

bosonic gauge theories in a form which resembles the partition functions of gauge theories

with fermionic matter:

ZYM(τ) =

∞∏
n=1

(1−Q2n)3

(1 +Q2n)(1− (4 + ns)Q2n +Q4n)
=

3∏
α=1

∞∏
n=1

(1−Q2n)

(1 +Qnzα)(1 +Qn/zα)

=
3∏

α=1

∞∏
n=1

1

(1 +Q2nzα)(1 +Q2n/zα)

(1−Qn)3

(1−Qn)2

1

(1 +Q2n−1zα)(1 +Q2n−1/zα)

∝
3∏

α=1

1

θ2(bα, τ)
η(τ)3 1

θ3(bα, τ)
∝

3∏
α=1

η(τ)3

ϑ
[
1/2

bα

]
(τ) ϑ

[
0

bα

]
(τ)

. (C.4)

It is important to note that the sign ambiguity for the zα in the above expressions leads to an

ambiguity in the real part of the lower characteristic of ϑ
[

0

bα

]
(τ), since ϑ

[
0

bα

]
(τ) ∼ ϑ

[
0

bα + 1
2

]
(τ).

This only occurs for purely imaginary roots of the defining polynomial, and pure-imaginary

roots are unique to nf = 0. It is precisely this feature which allows the apparently dissimilar

expressions for Z̃(nf , ns) and Z(nf , ns) to match when nf = 0.
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Equipped with the result in eq. (C.2), we can now find the specific {bα} which enter

into eq. (C.4) and moreover verify analytically that the sum
∑

α(bα)2 is real. Had this

not been real, the “phase-factors” in eq. (5.3) would have had non-unit modulus. Unit

modulus phase-factors are crucially tied to the convergence of the modular orbits. As we

shall see, it is simplest to show that these phase factors are indeed pure phases for the

special case of ns = 0. Proving these reality conditions for general ns 6= 0 will then be

relatively straightforward.

For ns = 0, the {zα} which enter into eq. (C.4) are simply given by

z1 = i

z2 = i
(

2 +
√

3
) 1

2

z3 = i

(
1

2 +
√

3

) 1
2

= i
(

2−
√

3
) 1

2
. (C.5)

The relation zα = e2πibα then allows us to solve directly for the {bα}:

b1 =
1

2πi
log(i) =

1

4

b2 =
1

2πi

(
log(i) + log

(
2 +
√

3
) 1

2

)
=

1

4
+ iB

b3 =
1

2πi

(
log(i)− log

(
2 +
√

3
) 1

2

)
=

1

4
− iB . (C.6)

From this it follows that∑
α

(bα)2

∣∣∣∣
YM

=

(
1

4

)2

+

(
1

4
+ iB

)2

+

(
1

4
− iB

)2

=
3

16
− 2B2 . (C.7)

We observe that the reality of this sum is guaranteed simply because the two non-trivial

complex characteristics are conjugate to each other. This conjugate nature, ensuring the

reality of the expression in eq. (C.7), is fundamentally due to the alternating signs on the

square roots present in the initial defining polynomials in eqs. (C.1) and (C.2).

Generalizing the reality condition in eq. (C.7) for ns 6= 0 is straightforward.

Substituting

2 +
√

3 −→
(

2 +
ns
2

)
+

√(
2 +

ns
2

)2
− 1 (C.8)

again yields b1(ns) = i and b2(ns) = b3(ns). Hence
∑3

α=1(bα)2 ∈ R for all ns.

D Alternate definitions of τ and extra simplifications for N = 4 SYM

In the main body of the paper we defined the parameter τ by analytic continuation from

β/R, where R is the radius of the three-sphere on which we are compactifying our 4D

gauge theories and β is the circumference of the thermal circle. Specifically, we analytically

continued β/R→ −2πiτ with τ ∈ C, whereupon we see that

Im τ =
1

2π

β

R
(D.1)
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and q ≡ e−β/R → e2πiτ . However, we have not found a satisfying physical interpretation of

Re τ within the 4D gauge theory. In this appendix, we explore the consequences of the fact

that other definitions of τ are also possible. Our hope is that these remarks might be helpful

for future studies which might seek to explore the meaning of Re τ for 4D gauge theories.

Let us first recall the consequences of this definition of τ . With this definition of τ ,

the modular T -transformation τ → τ + 1 has the effect of changing the fermion boundary

conditions in the Euclidean path-integral language, or equivalently has the effect of inserting

(−1)F into the partition function in Hamiltonian language. To see this, recall that in

free theories on S3
R × R bosonic states have energies ωn,B = n/R while fermions have

energies ωn,F = (n + 1
2)/R. Consequently, when bosonic and fermionic states appear in

partition functions, they are associated with factors of qn and qn+ 1
2 respectively. Thus,

under T , bosonic energy contributions to partition functions are unaffected, while fermionic

contributions are multiplied by a factor of (−1). This is precisely the effect of inserting a

(−1)F operator into the trace over Hilbert space defining a partition function.

We could instead define a modular parameter τ [x] by analytically continuing β/R →
−2πi x τ [x] for any x ∈ C with Re [x] > 0, so that

q ≡ e−
β
R −→ e2πixτ [x]

. (D.2)

To see the effect of this, let us first consider the action of the modular T -transformation

T : τ [x] → τ [x] + 1 on the partition function for the bosonic and fermionic states, which is

determined by the action of T on qn and qn+1/2 respectively:

T : qn −→ e2πinxqn , qn+1/2 −→ e2πi(n+1/2)xqn+1/2. (D.3)

For integer x, the bosonic and fermionic Boltzmann factors are mapped into themselves

up to an overall sign of ±1, while for non-integer values of x they accrue non-trivial

phases. Integer values of x are clearly rather special, in that when x ∈ Z the modular

T -transformation has a simple action. In the body of the paper we took x = 1, and in

this case the effect of the T -transformation is to flip the sign of the fermionic Boltzmann

factors. So acting with T amounts to a change in the fermion boundary conditions in the

Euclidean path-integral formulation of the theory when x = 1.

In this appendix, by contrast, we explore the consequences of choosing the x = 2

proportionality factor, so that Im [τ [2]] = 1
2π

β
2R . With this definition of the modular pa-

rameter, modular transformations do not change boundary conditions of either the fermions

or the bosons on S1. As such, the modular orbits of both fermionic and bosonic large-N

gauge theories are significantly simpler. Indeed, the reason why the modular orbits with

τ [2] = 1
2πi

β
2R are ultimately simpler then those with τ [1] = 1

2πi
β
R is because the modular

group associated with the former variable is a subgroup of that associated with the latter.

For the rest of this section, we use τ [2] as the modular parameter, so that

Q = e−β/2R = e2πiτ [2]
, q = Q2 = e−β/R = e4πiτ [2]

. (D.4)
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In this notation, the twisted partition function for YM coupled to a generic number of

adjoint scalars and adjoint fermions in eq. (3.17) evaluates to

Z̃
(
τ [2]
)

=

3∏
α=1

∞∏
n=1

(1−Q2n)

(1 +Qnzα)(1 +Qn/zα)
=

3∏
α=1

(
η
(
τ [2]
)

θ2

(
bα, τ [2]

){η(τ [2]
)
θ2

(
0, τ [2]

)} 1
2

)
,

(D.5)

which again has a modular structure. Here zα and bα have the same definitions as in the

body of the paper and in appendix B, and implicitly we have assumed that zα 6= −1.

Thermal partition functions can be obtained from the above by sending τ [2] → τ [2] + 1
2 ,

which is consistent with the claim that the modular T transformation do not change the

fermion boundary conditions. This feature turns out to make the modular orbit of Z̃(τ [2])

simpler than the modular orbit of Z̃(τ [1]) discussed in the body of this paper.

To make the essential points in the simplest context, consider the modular orbit for

the large-N limit of N = 4 SYM theory. When expressed in terms of Q = e−β/2R, the

starting “seed” twisted partition function takes the form

Z̃N=4

(
τ [2]
)

=
cos(πb)√

2

1

η
(
τ [2]
) (ϑ[1/20

](
τ [2]
)

η
(
τ [2]
) )3/2(

η
(
τ [2]
)

ϑ
[ 1
2
b

](
τ [2]
)) . (D.6)

It is easily seen that this “seed” term falls into the more general class of terms given by

T̃N=4
m,n

(
τ [2]
)

=
cos(πb)√

2

1

η
(
τ [2]
) (ϑ[P (m)/2

P (n)/2

](
τ [2]
)

η
(
τ [2]
) )3/2

 η
(
τ [2]
)

eπiP (m)·n·b ϑ
[
mb +

P (m)
2

nb +
P (n)

2

](
τ [2]
)
 (D.7)

where m,n are again coprime integers. Manipulations isomorphic to those in sections 5.1

and 5.2 establish that the S- and T -transformations indeed act within the set of functions

defined in eq. (D.7) and that the modular orbits of Z̃N=4(τ) in eq. (D.7) map surjectively

into the set of coprime pairs. As a result, the twisted seed term has a modular completion

given by

Z̃N=4
modular

(
τ [2]
)

=
(
Im τ [2]

)−1/2
∑
m,n∈Z
m⊥n

∣∣Tm,n(τ [2]
)∣∣2 . (D.8)

Again, as discussed in section 5.1, we immediately infer that this sum represents a 2D

CFT with a collection of primary fields that have a continuum of effective conformal

dimensions h
(eff)
k .

It amusing to note that neither the twisted partition function seed term nor its mod-

ular completion have any Hagedorn poles for “physical” temperatures, i.e., 1/β = T ∈
[0,∞) ⊂ R. The absence of Hagedorn poles in the seed term is due to intricate cancella-

tions between bosonic and fermionic states at different levels within the twisted partition

function. This observation was originally made in ref. [9], and appears to be the first

known field-theoretic incarnation of certain string-theoretic observations pertaining to bo-

son/fermion cancellations [49–51] and misaligned supersymmetry [50–52]. The fact that it

extends to the modular completion — which is modular-invariant by construction — may

be important for understanding the links between our large-N gauge-theory construction

and string theory.
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