2,619 research outputs found

    NK and T cells constitute two major, functionally distinct intestinal epithelial lymphocyte subsets in the chicken

    Get PDF
    Non-mammalian NK cells have not been characterized in detail; however, their analysis is essential for the understanding of the NK cell receptor phylogeny. As a first step towards defining chicken NK cells, several tissues were screened for the presence of NK cells, phenotypically defined as CD8(+) cells lacking T- or B-lineage specific markers. By this criteria, approximately 30% of CD8(+) intestinal intraepithelial lymphocytes (IEL), but <1% of splenocytes or peripheral blood lymphocytes were defined as NK cells. These CD8(+)CD3(-) IEL were used for the generation of the 28-4 mAb, immunoprecipitating a 35-kDa glycoprotein with a 28-kDa protein core. The CD3 and 28-4 mAb were used to separate IEL into CD3(+) IEL T cells and 28-4(+) cells, both co-expressing the CD8 antigen. During ontogeny, 28-4(+) cells were abundant in the IEL and in the embryonic spleen, where two subsets could be distinguished according to their CD8 and c-kit expression. Most importantly, 28-4(+) IEL lysed NK-sensitive targets, whereas intestinal T cells did not have any spontaneous cytolytic activity. These results define two major, phenotypically and functionally distinct IEL subpopulations, and imply an important role of NK cells in the mucosal immune system

    More on the universal equation for Efimov states

    Full text link
    Efimov states are a sequence of shallow three-body bound states that arise when the two-body scattering length is much larger than the range of the interaction. The binding energies of these states are described as a function of the scattering length and one three-body parameter by a transcendental equation involving a universal function of one angular variable. We provide an accurate and convenient parametrization of this function. Moreover, we discuss the effective treatment of range corrections in the universal equation and compare with a strictly perturbative scheme.Comment: 13 pages, 5 figure

    Application of Cathodoluminescence in Paint Analysis

    Get PDF
    When solving cases of burglary or investigating ship collisions, the forensic scientist frequently has to examine several layers of paint of the same color, often white. As a rule, the usual microscopic and spectroscopic methods [fluorescence microscopy, FT-IR (Fourier Transform Infrared Spectroscopy), pyrolysis, GC/MS (Gas Chromatography - Mass Spectrometry), etc.] are not sufficient to prove that the paint traces found on the scene, which are often only available in the form of fragments, originated from the same source as the reference material. It is possible to achieve convincing proof of this using either an optical cathodoluminescence-microscope or a cathodoluminescence-scanning electron microscope, both of which can be coupled to a visible (VIS)-spectrometer

    Cytokines of Birds: Conserved Functions

    Get PDF
    Targeted disruptions of the mouse genes for cytokines, cytokine receptors, or components of cytokine signaling cascades convincingly revealed the important roles of these molecules in immunologic processes. Cytokines are used at present as drugs to fight chronic microbial infections and cancer in humans, and they are being evaluated as immune response modifiers to improve vaccines. Until recently, only a few avian cytokines have been characterized, and potential applications thus have remained limited to mammals. Classic approaches to identify cytokine genes in birds proved difficult because sequence conservation is generally low. As new technology and high throughput sequencing became available, this situation changed quickly. We review here recent work that led to the identification of genes for the avian homologs of interferon-a/b (IFNa/b) and IFN-g, various interleukins (IL), and several chemokines. From the initial data on the biochemical properties of these molecules, a picture is emerging that shows that avian and mammalian cytokines may perform similar tasks, although their primary structures in most cases are remarkably different

    Chicken BAFF

    Get PDF
    Members of the tumor necrosis factor (TNF) family play key roles in the regulation of inflammation, immune responses and tissue homeostasis. Here we describe the identification of the chicken homologue of mammalian B cell activating factor of the TNF family (BAFF/BLyS). By searching a chicken EST database we identified two overlapping cDNA clones that code for the entire open reading frame of chicken BAFF (chBAFF), which contains a predicted transmembrane domain and a putative furin protease cleavage site like its mammalian counterparts. The amino acid identity between soluble chicken and human BAFF is 76%, considerably higher than for most other known cytokines. The chBAFF gene is most strongly expressed in the bursa of Fabricius. Soluble recombinant chBAFF produced by human 293T cells interacted with the mammalian cell-surface receptors TACI, BCMA and BAFF-R. It bound to chicken B cells, but not to other lymphocytes, and it promoted the survival of splenic chicken B cells in culture. Furthermore, bacterially expressed chBAFF induced the selective expansion of B cells in the spleen and cecal tonsils when administered to young chicks. Our results suggest that like its mammalian counterpart, chBAFF plays an important role in survival and/or proliferation of chicken B cells

    Identification of a Candidate CD5 Homologue in the Amphibian Xenopus laevis

    Get PDF
    We identified a novel T cell Ag in the South African clawed toad (Xenopus laevis) by a mAb designated 2B1. This Ag is present in relatively high levels on most thymocytes, approximately 65% of splenocytes, 55% of PBL, and 65% of intestinal lymphocytes, but is rarely seen on IgM+ B cells in any of these tissues. Lymphocytes bearing the 2B1 Ag proliferate in response to stimulation with Con A or PHA, whereas the 2B1- lymphocytes are reactive to LPS. Biochemical analysis indicates that this Ag is a differentially phosphorylated glycoprotein of 71 to 82 kDa. The protein core of 64 kDa bears both N- and O-linked carbohydrate side chains. The amino-terminal protein sequence of the 2B1 Ag shares significant homology with both the macrophage scavenger receptor type 1 motif and the mammalian CD5/CD6 family. The biochemical characteristics and cellular distribution of the 2B1 Ag suggest that it represents the CD5 homologue in X. laevis. While T cells constitutively express this highly conserved molecule, Xenopus B cells acquire the CD5 homologue only when they are stimulated in the presence of T cell

    Chicken γδ T cells proliferate upon IL-2 and IL-12 treatment and show a restricted receptor repertoire in cell culture

    Get PDF
    In chickens, γδ T cells represent a large fraction of peripheral T cells; however, their function remains largely unknown. Here, we describe the selective in vitro expansion of γδ T cells from total splenocytes by stimulation with the cytokines IL-2 and IL-12. Under these conditions, γδ T cells proliferated preferentially and reached frequencies of >95% within three weeks. Although IL-2 alone also triggered proliferation, an increased proliferation rate was observed in combination with IL-12. Most of the expanded cells were γδ TCR and CD8 double-positive. Splenocytes sorted into TCR1+CD8+, TCR1highCD8−, and TCR1lowCD8− subsets proliferated well upon dual stimulation with IL-2/IL-12, indicating that none of the three γδ T cell subsets require bystander activation for proliferation. TCR1+CD8+ cells maintained CD8 surface expression during stimulation, whereas CD8− subpopulations showed varied levels of CD8 upregulation, with the highest upregulation observed in the TCR1high subset. Changes in the γδ T-cell receptor repertoire during cell culture from day 0 to day 21 were analyzed by next-generation sequencing of the γδ variable regions. Overall, long-term culture led to a restricted γ and δ chain repertoire, characterized by a reduced number of unique variable region clonotypes, and specific V genes were enriched at day 21. On day 0, the δ chain repertoire was highly diverse, and the predominant clonotypes differed between animals, while the most frequent γ-chain clonotypes were shared between animals. However, on day 21, the most frequent clonotypes in both the γ and δ chain repertoires were different between animals, indicating that selective expansion of dominant clonotypes during stimulation seems to be an individual outcome. In conclusion, IL-2 and IL-12 were sufficient to stimulate the in vitro outgrowth of γδ T cells. Analyses of the TCR repertoire indicate that the culture leads to an expansion of individual T cell clones, which may reflect previous in vivo activation. This system will be instrumental in studying γδ T cell function

    Identification of T-cell receptor a-chain genes in the chicken

    Get PDF
    T-cell receptor (TCR) -chain (TCR) and ß-chain (TCRß) genes are well characterized in mammals, while only TCRß genes have been identified in other vertebrates. To identify avian TCR genes, we used monoclonal anti-CD3 antibodies to isolate chicken TCR for peptide sequence analysis. Degenerate oligonucleotide probes were then used to isolate a candidate TCR cDNA clone that hybridized with a 1.7-kb mRNA species present only in ß T cells and in tissues populated by these cells. Southern blot analysis revealed gene rearrangement in thymocytes and ß T-cell lines. The TCR cDNA candidate encoded an openreading frame of 275 amino acids, the predicted variable (V)-, joining (J)-, and constant (C)-region amino acid sequences of which shared 40%, 60%, and 25% homology with corresponding mammalian sequences. A single C gene and 25 V genes were identified by using region-specific probes. The V cDNA probe isolated from a Vß1+ cell line reacted with transcripts from one of five Vß2+ cell lines, suggesting shared use of V genes by Vß1+ and Vß2+ T cells and the existence of other V gene families. A genomic V sequence was flanked by classical recombination signal sequences but, unlike previously defined V genes, the leader and V region were encoded by a single exon. The data indicate evolutionary conservation of the basic TCR gene structure in birds and mammal

    Characterization of a novel chicken γδ TCR-specific marker

    Get PDF
    Chickens are a species with a high number of γδ T cells in various tissues. Despite their abundance, γδ T cells are poorly characterized in chickens, partially due to a lack of specific reagents to characterize these cells. Up until now, the TCR1 clone has been the only γδ T cell-specific monoclonal antibody (mAb) in chickens and additional reagents for γδ T cell subsets are needed. In order to address this issue, new mAb were generated in our laboratory by immunizing mice with in vitro cultured γδ T cells. In an initial flow cytometric screen a new mAb, clone “8D2”, displayed an interesting staining pattern that mirrored γδ TCR up- and downregulation in the γδ T cell line D4 over time, prompting us to characterize this antibody further. We compared the expression of the unknown 8D2 epitope in combination with TCR1 staining across various primary cells. In splenocytes, peripheral blood lymphocytes and intestinal epithelial cells, 8D2 consistently labeled a subset of TCR1+ cells. To determine, whether specific γδ T cell receptors were recognized by 8D2, we sorted γδ T cells according to their 8D2 and TCR1 expression and analyzed their TCR V(D)J gene usage by TCR profiling. Strikingly, sorted 8D2+ cells preferentially expressed Vγ3 genes, whereas the TCR Vγ genes used by TCR1+ 8D2- cells were more variable. γδ TCR in 8D2+ cells were most frequently comprised of gamma chain VJ genes TRGV3-8 and TRGJ3, and delta chain VDJ genes TRDV1-2, TRDD2, TRDJ1. To confirm binding of 8D2 to specific γδ TCR, the preferentially utilized combination of TRG and TRD was expressed in HEK293 cells in combination with CD3, demonstrating surface binding of the 8D2 mAb to this Vγ3 γδ TCR-expressing cell line. Conversely, HEK293 cells expressing either Vγ1 or Vγ2 TCR did not react with 8D2. In conclusion, 8D2 is a novel tool for identifying specific Vγ3 bearing γδ T cells

    The neural correlates of semantic richness : Evidence from an fMRI study of word learning

    Get PDF
    We investigated the neural correlates of concrete nouns with either many or few semantic features. A group of 21 participants underwent two days of training and were then asked to categorize 40 newly learned words and a set of matched familiar words as living or nonliving in an MRI scanner. Our results showed that the most reliable effects of semantic richness were located in the left angular gyrus (AG) and middle temporal gyrus (MTG), where activation was higher for semantically rich than poor words. Other areas showing the same pattern included bilateral precuneus and posterior cingulate gyrus. Our findings support the view that AG and anterior MTG, as part of the multimodal network, play a significant role in representing and integrating semantic features from different input modalities. We propose that activation in bilateral precuneus and posterior cingulate gyrus reflects interplay between AG and episodic memory systems during semantic retrieval
    corecore