175 research outputs found

    Complex Systems: Nonlinerity and Structural Complexity in spatially extended and discrete systems

    Get PDF
    Esta Tesis doctoral aborda el estudio de sistemas de muchos elementos (sistemas discretos) interactuantes. La fenomenología presente en estos sistemas esta dada por la presencia de dos ingredientes fundamentales: (i) Complejidad dinámica: Las ecuaciones del movimiento que rigen la evolución de los constituyentes son no lineales de manera que raramente podremos encontrar soluciones analíticas. En el espacio de fases de estos sistemas pueden coexistir diferentes tipos de trayectorias dinámicas (multiestabilidad) y su topología puede variar enormemente dependiendo de los parámetros usados en las ecuaciones. La conjunción de dinámica no lineal y sistemas de muchos grados de libertad (como los que aquí se estudian) da lugar a propiedades emergentes como la existencia de soluciones localizadas en el espacio, sincronización, caos espacio-temporal, formación de patrones, etc... (ii) Complejidad estructural: Se refiere a la existencia de un alto grado de aleatoriedad en el patrón de las interacciones entre los componentes. En la mayoría de los sistemas estudiados esta aleatoriedad se presenta de forma que la descripción de la influencia del entorno sobre un único elemento del sistema no puede describirse mediante una aproximación de campo medio. El estudio de estos dos ingredientes en sistemas extendidos se realizará de forma separada (Partes I y II de esta Tesis) y conjunta (Parte III). Si bien en los dos primeros casos la fenomenología introducida por cada fuente de complejidad viene siendo objeto de amplios estudios independientes a lo largo de los últimos a¿nos, la conjunción de ambas da lugar a un campo abierto y enormemente prometedor, donde la interdisciplinariedad concerniente a los campos de aplicación implica un amplio esfuerzo de diversas comunidades científicas. En particular, este es el caso del estudio de la dinámica en sistemas biológicos cuyo análisis es difícil de abordar con técnicas exclusivas de la Bioquímica, la Físic

    Information sharing in Quantum Complex Networks

    Get PDF
    We introduce the use of entanglement entropy as a tool for studying the amount of information shared between the nodes of quantum complex networks. By considering the ground state of a network of coupled quantum harmonic oscillators, we compute the information that each node has on the rest of the system. We show that the nodes storing the largest amount of information are not the ones with the highest connectivity, but those with intermediate connectivity thus breaking down the usual hierarchical picture of classical networks. We show both numerically and analytically that the mutual information characterizes the network topology. As a byproduct, our results point out that the amount of information available for an external node connecting to a quantum network allows to determine the network topology.Comment: text and title updated, published version [Phys. Rev. A 87, 052312 (2013)

    Pulsating-campaigns of human prophylaxis driven by risk perception palliate oscillations of direct contact transmitted diseases

    Get PDF
    Human behavioral responses play an important role in the impact of disease outbreaks and yet they are often overlooked in epidemiological models. Understanding to what extent behavioral changes determine the outcome of spreading epidemics is essential to design effective intervention policies. Here we explore, analytically, the interplay between the personal decision to protect oneself from infection and the spreading of an epidemic. We do so by coupling a decision game based on the perceived risk of infection with a Susceptible-Infected-Susceptible model. Interestingly, we find that the simple decision on whether to protect oneself is enough to modify the course of the epidemics, by generating sustained steady oscillations in the prevalence. We deem these oscillations detrimental, and propose two intervention policies aimed at modifying behavioral patterns to help alleviate them. Surprisingly, we find that pulsating campaigns, compared to continuous ones, are more effective in diminishing such oscillations.Comment: 19 pages, 6 figure

    From Scale-free to Erdos-Renyi Networks

    Full text link
    We analyze a model that interpolates between scale-free and Erdos-Renyi networks. The model introduced generates a one-parameter family of networks and allows to analyze the role of structural heterogeneity. Analytical calculations are compared with extensive numerical simulations in order to describe the transition between these two important classes of networks. Finally, an application of the proposed model to the study of the percolation transition is presented.Comment: 8 pages, 6 figure

    A framework for epidemic spreading in multiplex networks of metapopulations

    Get PDF
    We propose a theoretical framework for the study of epidemics in structured metapopulations, with heterogeneous agents, subjected to recurrent mobility patterns. We propose to represent the heterogeneity in the composition of the metapopulations as layers in a multiplex network, where nodes would correspond to geographical areas and layers account for the mobility patterns of agents of the same class. We analyze both the classical Susceptible-Infected-Susceptible and the Susceptible-Infected-Removed epidemic models within this framework, and compare macroscopic and microscopic indicators of the spreading process with extensive Monte Carlo simulations. Our results are in excellent agreement with the simulations. We also derive an exact expression of the epidemic threshold on this general framework revealing a non-trivial dependence on the mobility parameter. Finally, we use this new formalism to address the spread of diseases in real cities, specifically in the city of Medellin, Colombia, whose population is divided into six socio-economic classes, each one identified with a layer in this multiplex formalism.Comment: 13 pages, 11 figure

    Network bypasses sustain complexity

    Get PDF
    Real-world networks are neither regular nor random, a fact elegantly explained by mechanisms such as the Watts-Strogatz or the Barabasi-Albert models. Both mechanisms naturally create shortcuts and hubs, which enhance network's navigability. They also tend to be overused during geodesic navigational processes, making the networks fragile against jamming. Why, then, networks with complex topologies are ubiquitous? Here we show that these models entropically generate network bypasses: alternative routes to shortest paths which are topologically longer but easier to navigate. We develop a mathematical theory that elucidates the emergence and consolidation of network bypasses and measures their navigability gain. We apply our theory to a wide range of real-world networks and find that they sustain complexity by different amounts of network bypasses. At the top of this complexity ranking we found the human brain, what points out the importance of these results to understand the plasticity of complex systems.Comment: 23 pages, 2 figures. A Supplementary Information file is available but has not been submitted to Arxi

    Correlation Dimension of Complex Networks

    Get PDF
    We propose a new measure to characterize the dimension of complex networks based on the ergodic theory of dynamical systems. This measure is derived from the correlation sum of a trajectory generated by a random walker navigating the network, and extends the classical Grassberger-Procaccia algorithm to the context of complex networks. The method is validated with reliable results for both synthetic networks and real-world networks such as the world air-transportation network or urban networks, and provides a computationally fast way for estimating the dimensionality of networks which only relies on the local information provided by the walkers

    Complex Systems: Nonlinearity and Structural Complexity in spatially extended and discrete systems

    Get PDF
    Resumen Esta Tesis doctoral aborda el estudio de sistemas de muchos elementos (sistemas discretos) interactuantes. La fenomenología presente en estos sistemas esta dada por la presencia de dos ingredientes fundamentales: (i) Complejidad dinámica: Las ecuaciones del movimiento que rigen la evolución de los constituyentes son no lineales de manera que raramente podremos encontrar soluciones analíticas. En el espacio de fases de estos sistemas pueden coexistir diferentes tipos de trayectorias dinámicas (multiestabilidad) y su topología puede variar enormemente dependiendo de dos parámetros usados en las ecuaciones. La conjunción de dinámica no lineal y sistemas de muchos grados de libertad (como los que aquí se estudian) da lugar a propiedades emergentes como la existencia de soluciones localizadas en el espacio, sincronización, caos espacio-temporal, formación de patrones, etc... (ii) Complejidad estructural: Se refiere a la existencia de un alto grado de aleatoriedad en el patrón de las interacciones entre los componentes. En la mayoría de los sistemas estudiados esta aleatoriedad se presenta de forma que la descripción de la influencia del entorno sobre un único elemento del sistema no puede describirse mediante una aproximación de campo medio. El estudio de estos dos ingredientes en sistemas extendidos se realizará de forma separada (Partes I y II de esta Tesis) y conjunta (Parte III). Si bien en los dos primeros casos la fenomenología introducida por cada fuente de complejidad viene siendo objeto de amplios estudios independientes a lo largo de los últimos años, la conjunción de ambas da lugar a un campo abierto y enormemente prometedor, donde la interdisciplinariedad concerniente a los campos de aplicación implica un amplio esfuerzo de diversas comunidades científicas. En particular, este es el caso del estudio de la dinámica en sistemas biológicos cuyo análisis es difícil de abordar con técnicas exclusivas de la Bioquímica, la Física Estadística o la Física Matemática. En definitiva, el objetivo marcado en esta Tesis es estudiar por separado dos fuentes de complejidad inherentes a muchos sistemas de interés para, finalmente, estar en disposición de atacar con nuevas perspectivas problemas relevantes para la Física de procesos celulares, la Neurociencia, Dinámica Evolutiva, etc..
    • …
    corecore