144 research outputs found

    Aligning Decision-making and Key Behaviors with Effective Fisheries Management

    Get PDF
    At least two-thirds of global fish stocks are overfished or fully exploited (FAO, 2014). As a result, fisheries are not producing nearly as much food, profit, or livelihood opportunities as they could be. Well implemented and effective Rights Based Management (RBM) can reverse these trends, but designing and implementing such systems is challenging. There are good design principles based on research and experience for designing RBM systems, focused on ensuring that stakeholders buy into management measures and that fishermen can capture the benefits of their own conservation efforts. However, there are many other decisions that must be made and behaviors that must be exhibited by fishery scientists, resource managers, fishermen, and others to make the entire RBM system effective. Because managing a fishery is a human enterprise, understanding the decisions and behaviors of fishermen and managers is imperative for achieving sustainability. The fishery management process is complex, involving multiple decisions and behaviors by several actors. Fishery managers, scientists, and fishermen are motivated and affected by a number of internal and external variables. Economic, social, political, cultural, psychological, or other personal factors influence decision-making and can induce undesired or unintended behavioral responses. Therefore, understanding human decision-making processes and their drivers is vital in ensuring the success of effective fishery management strategies. The purpose of this report is to describe specific behaviors and decisions that have large impacts on the efficacy of fishery management, and generate ideas for interventions that may influence those behaviors such that they become more aligned with effective management. This report does not discredit top-down regulations nor advocate for an entirely behavioral approach. Rather, it seeks to establish a broader context for discussion regarding challenges in fishery management that may be amenable to behavioral interventions. Behavioral interventions deployed as part of a comprehensive management strategy would be anticipated to enhance the efficacy of fishery management, just as they have in other sectors such as health, education, and energy use (Thaler & Sunstein, 2009). Generic interventions suggested in this assessment are for illustrative purposes only, and are neither prescriptive nor a panacea for all fishery management problems. Every fishery is unique and interventions need to be specific to local needs and contexts. The methodology for this research is a desktop analysis, an extensive literature review of the major challenges and drivers impeding effective fishery management. We begin with a background discussion of human behavior and how behavioral interventions may influence better decision-making. We then outline the fishery management process to describe the stakeholders involved in managing a fishery and the types of decisions that must be taken for its success. We examine three key groups of actors in fisheries management: the fishery management authority, fisheries scientists, and fishermen. Each group is analyzed, including their roles, level of influence within the decision-making process, and currently exhibited behaviors. There are six challenges addressed in this report that appear consistently throughout fisheries management literature and that have a major impact on fishery efficiency and sustainability: (1) resistance to data-limited assessment (2) translating science to management action (3) communicating uncertainty and risk to stakeholders (4) catch misreporting (5) bycatch and discarding and (6) destructive fishing (Peterman, 2004; Hilborn et al., 2005; Daw and Gray, 2005; OECD, 2010; OECD; 2013; Government of Canada, 2011). Drawing on theories from psychology, behavioral economics, and social sciences literature, we investigate the drivers of each challenge and craft illustrative behavioral interventions. (exerpt from Introduction, download PDF for full introduction.

    Underwater Central California: A Guide to Saving Your Ocean Heritage

    Get PDF
    Describes the state of the wildlife and habitats inside the three national marine sanctuaries that stretch along the coast of central California, and identifies key threats to the future of California's coast

    Effects of climate change and variability on large pelagic fish in the Northwest Atlantic Ocean: implications for improving climate resilient management for pelagic longline fisheries

    Get PDF
    Climate change influences marine environmental conditions and is projected to increase future environmental variability. In the North Atlantic, such changes will affect the behavior and spatiotemporal distributions of large pelagic fish species (i.e., tunas, billfishes, and sharks). Generally, studies on these species have focused on specific climate-induced changes in abiotic factors separately (e.g., water temperature) and on the projection of shifts in species abundance and distribution based on these changes. In this review, we consider the latest research on spatiotemporal effects of climate-induced environmental changes to HMS’ life history, ecology, physiology, distribution, and habitat selection, and describe how the complex interplay between climate-induced changes in biotic and abiotic factors, including fishing, drives changes in species productivity and distribution in the Northwest Atlantic. This information is used to provide a baseline for investigating implications for management of pelagic longline fisheries and to identify knowledge gaps in this region. Warmer, less oxygenated waters may result in higher post-release mortality in bycatch species. Changes in climate variability will likely continue to alter the dynamics of oceanographic processes regulating species behavior and distribution, as well as fishery dynamics, creating challenges for fishery management. Stock assessments need to account for climate-induced changes in species abundance through the integration of species-specific responses to climate variability. Climate-induced changes will likely result in misalignment between current spatial and temporal management measures and the spatiotemporal distribution of these species. Finally, changes in species interactions with fisheries will require focused research to develop best practices for adaptive fisheries management and species recovery

    Behavior Change Interventions to Reduce Illegal Fishing

    Get PDF
    Illegal fishing is a serious problem that threatens the sustainability of fisheries around the world. Policy makers and fishery managers often rely on the imposition of strict sanctions and relatively intensive monitoring and enforcement programs to increase the costs of illegal behavior and thus deter it. However, while this can be successful in fisheries with sufficient resources to support high levels of surveillance and effective systems for imposing penalties, many fisheries lack the resources and requisite governance to successfully deter illegal fishing. Other types of governance systems, such as customary marine tenure and co-management, rely more on mechanisms such as norms, trust, and the perceived legitimacy of regulations for compliance. More generally, the absence of such social and psychological factors that encourage compliance in any fishery can undermine the efficacy of an otherwise effective and well-designed fishery management system. Here we describe insights from behavioral science that may be helpful in augmenting and securing the effectiveness of conventional deterrence strategies as well as in developing alternative means of deterring illegal fishing in fisheries in which high levels of surveillance and enforcement are not feasible. We draw on the behavioral science literature to describe a process for designing interventions for changing specific illegal fishing behaviors. The process begins with stakeholder characterization to capture existing norms, beliefs, and modes of thinking about illegal fishing as well as descriptions of specific illegal fishing behaviors. Potential interventions that may disrupt the beliefs, norms, and thought modes that give rise to these behaviors, along with those that encourage desirable behaviors, can be developed by applying principles gleaned from the behavioral science literature. These potential interventions can then be tested in artefactual experiments, piloted with small groups of actual stakeholders and, finally, implemented at scale

    A typology of fisheries management tools: using experience to catalyse greater success

    Get PDF
    Fisheries provide nutrition and livelihoods for coastal populations, but many fisheries are fully or over-exploited and we lack an approach for analysing which factors affect management tool performance. We conducted a literature review of 390 studies to assess how fisheries characteristics affected management tool performance across both small-scale and large-scale fisheries. We defined success as increased or maintained abundance or biomass, reductions in fishing mortality or improvements in population status. Because the literature only covered a narrow set of biological factors, we also conducted an expert elicitation to create a typology of broader fishery characteristics, enabling conditions and design considerations that affect performance. The literature suggested that the most commonly used management tool in a region was often the most successful, although the scale of success varied. Management tools were more often deemed successful when used in combination, particularly pairings of tools that controlled fishing mortality or effort with spatial management. Examples of successful combinations were the use of catch limits with quotas and limited entry, and marine protected areas with effort restrictions. The most common factors associated with inadequate biological performance were ‘structural’ issues, including poor design or implementation. The expert-derived typologies revealed strong local leadership, high community involvement and governance capacity as common factors of success across management tool categories (i.e. input, output and technical measures), but the degree of importance varied. Our results are designed to inform selection of appropriate management tools based on empirical data and experience to increase the likelihood of successful fisheries management.Department of HE and Training approved lis

    Prioritization of knowledge-needs to achieve best practices for bottom trawling in relation to seabed habitats

    Get PDF
    Management and technical approaches that achieve a sustainable level of fish production while at the same time minimizing or limiting the wider ecological effects caused through fishing gear contact with the seabed might be considered to be ‘best practice’. To identify future knowledge-needs that would help to support a transition towards the adoption of best practices for trawling, a prioritization exercise was undertaken with a group of 39 practitioners from the seafood industry and management, and 13 research scientists who have an active research interest in bottom-trawl and dredge fisheries. A list of 108 knowledge-needs related to trawl and dredge fisheries was developed in conjunction with an ‘expert task force’. The long list was further refined through a three stage process of voting and scoring, including discussions of each knowledge-need. The top 25 knowledge-needs are presented, as scored separately by practitioners and scientists. There was considerable consistency in the priorities identified by these two groups. The top priority knowledge-need to improve current understanding on the distribution and extent of different habitat types also reinforced the concomitant need for the provision and access to data on the spatial and temporal distribution of all forms of towed bottom-fishing activities. Many of the other top 25 knowledge-needs concerned the evaluation of different management approaches or implementation of different fishing practices, particularly those that explore trade-offs between effects of bottom trawling on biodiversity and ecosystem services and the benefits of fish production as food.Fil: Kaiser, Michel J.. Bangor University; Reino UnidoFil: Hilborn, Ray. University of Washington; Estados UnidosFil: Jennings, Simon. Fisheries and Aquaculture Science; Reino UnidoFil: Amaroso, Ricky. University of Washington; Estados UnidosFil: Andersen, Michael. Danish Fishermen; DinamarcaFil: Balliet, Kris. Sustainable Fisheries Partnership; Estados UnidosFil: Barratt, Eric. Sanford Limited; Nueva ZelandaFil: Bergstad, Odd A. Institute of Marine Research; NoruegaFil: Bishop, Stephen. Independent Fisheries Ltd; Nueva ZelandaFil: Bostrom, Jodi L. Marine Stewardship Council; Reino UnidoFil: Boyd, Catherine. Clearwater Seafoods; CanadáFil: Bruce, Eduardo A. Friosur S.A.; ChileFil: Burden, Merrick. Marine Conservation Alliance; Estados UnidosFil: Carey, Chris. Independent Fisheries Ltd.; Estados UnidosFil: Clermont, Jason. New England Aquarium; Estados UnidosFil: Collie, Jeremy S. University of Rhode Island,; Estados UnidosFil: Delahunty, Antony. National Federation of Fishermen; Reino UnidoFil: Dixon, Jacqui. Pacific Andes International Holdings Limited; ChinaFil: Eayrs, Steve. Gulf of Maine Research Institute; Estados UnidosFil: Edwards, Nigel. Seachill Ltd.; Reino UnidoFil: Fujita, Rod. Environmental Defense Fund; Reino UnidoFil: Gauvin, John. Alaska Seafood Cooperative; Estados UnidosFil: Gleason, Mary. The Nature Conservancy; Estados UnidosFil: Harris, Brad. Alaska Pacific University; Estados UnidosFil: He, Pingguo. University of Massachusetts Dartmouth; Estados UnidosFil: Hiddink, Jan G. Bangor University; Reino UnidoFil: Hughes, Kathryn M. Bangor University; Reino UnidoFil: Inostroza, Mario. EMDEPES; ChileFil: Kenny, Andrew. Fisheries and Aquaculture Science; Reino UnidoFil: Kritzer, Jake. Environmental Defense Fund; Estados UnidosFil: Kuntzsch, Volker. Sanford Limited; Estados UnidosFil: Lasta, Mario. Diag. Montegrande N° 7078. Mar del Plata; ArgentinaFil: Lopez, Ivan. Confederacion Española de Pesca; EspañaFil: Loveridge, Craig. South Pacific Regional Fisheries Management Organisation; Nueva ZelandaFil: Lynch, Don. Gorton; Estados UnidosFil: Masters, Jim. Marine Conservation Society; Reino UnidoFil: Mazor, Tessa. CSIRO Marine and Atmospheric Research; AustraliaFil: McConnaughey, Robert A. US National Marine Fisheries Service; Estados UnidosFil: Moenne, Marcel. Pacificblu; ChileFil: Francis. Marine Scotland Science; Reino UnidoFil: Nimick, Aileen M. Alaska Pacific University; Estados UnidosFil: Olsen, Alex. A. Espersen; DinamarcaFil: Parker, David. Young; Reino UnidoFil: Parma, Ana María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; ArgentinaFil: Penney, Christine. Clearwater Seafoods; CanadáFil: Pierce, David. Massachusetts Division of Marine Fisheries; Estados UnidosFil: Pitcher, Roland. CSIRO Marine and Atmospheric Research; AustraliaFil: Pol, Michael. Massachusetts Division of Marine Fisheries; Estados UnidosFil: Richardson, Ed. Pollock Conservation Cooperative; Estados UnidosFil: Rijnsdorp, Adriaan D. Wageningen IMARES; Países BajosFil: Rilatt, Simon. A. Espersen; DinamarcaFil: Rodmell, Dale P. National Federation of Fishermen's Organisations; Reino UnidoFil: Rose, Craig. FishNext Research; Estados UnidosFil: Sethi, Suresh A. Alaska Pacific University; Estados UnidosFil: Short, Katherine. F.L.O.W. Collaborative; Nueva ZelandaFil: Suuronen, Petri. Fisheries and Aquaculture Department; ItaliaFil: Taylor, Erin. New England Aquarium; Estados UnidosFil: Wallace, Scott. The David Suzuki Foundation; CanadáFil: Webb, Lisa. Gorton's Inc.; Estados UnidosFil: Wickham, Eric. Unit four –1957 McNicoll Avenue; CanadáFil: Wilding, Sam R. Monterey Bay Aquarium; Estados UnidosFil: Wilson, Ashley. Department for Environment; Reino UnidoFil: Winger, Paul. Memorial University Of Newfoundland; CanadáFil: Sutherland, William J. University of Cambridge; Reino Unid

    Investments in Gas Pipelines and Liquefied Natural Gas Infrastructure. What is the Impact on the Security of Supply?

    Full text link

    Natural Resources, Investment and Long-Term Income

    Full text link

    Equilibrium with a Market of Permits

    Full text link
    corecore