3,798 research outputs found

    Boson stars in massive dilatonic gravity

    Get PDF
    We study equilibrium configurations of boson stars in the framework of a class scalar-tensor theories of gravity with massive gravitational scalar (dilaton). In particular we investigate the influence of the mass of the dilaton on the boson star structure. We find that the masses of the boson stars in presence of dilaton are close to those in general relativity and they are sensitive to the ratio of the boson mass to the dilaton mass within a typical few percent. It turns out also that the boson star structure is mainly sensitive to the mass term of the dilaton potential rather to the exact form of the potential.Comment: 9 pages, latex, 9 figures, one figure dropped, new comments added, new references added, typos correcte

    Spiral Chain O4 Form of Dense Oxygen

    Full text link
    Oxygen is in many ways a unique element: the only known diatomic molecular magnet and the capability of stabilization of the hitherto unexpected O8 cluster structure in its solid form at high pressure. Molecular dissociations upon compression as one of the fundamental problems were reported for other diatomic solids (e.g., H2, I2, Br2, and N2), but it remains elusive for solid oxygen, making oxygen an intractable system. We here report the theoretical prediction on the dissociation of molecular oxygen into a polymeric spiral chain O4 structure (\theta-O4) by using first-principles calypso method on crystal structure prediction. The \theta-O4 stabilizes above 2 TPa and has been observed as the third high pressure phase of sulfur (S-III). We find that the molecular O8 phase remains extremely stable in a large pressure range of 0.008 - 2 TPa, whose breakdown is driven by the pressure-induced instability of a transverse acoustic phonon mode at zone boundary, leading to the ultimate formation of \theta-O4. Remarkably, stabilization of \theta-O4 turns oxygen from a superconductor into an insulator with a wide band gap (approximately 5.9 eV) originating from the sp3-like hybridized orbitals of oxygen and the localization of valence electrons. (This is a pre-print version of the following article: Li Zhu et al, Spiral chain O4 form of dense oxygen, Proc. Natl. Acad. Sci. U.S.A. (2011), doi: 10.1073/pnas.1119375109, which has been published online at http://www.pnas.org/content/early/2011/12/27/1119375109 .)Comment: 13 apages, 3 figure

    Molecular Clouds associated with the Type Ia SNR N103B in the Large Magellanic Cloud

    Full text link
    N103B is a Type Ia supernova remnant (SNR) in the Large Magellanic Cloud (LMC). We carried out new 12^{12}CO(JJ = 3-2) and 12^{12}CO(JJ = 1-0) observations using ASTE and ALMA. We have confirmed the existence of a giant molecular cloud (GMC) at VLSRV_\mathrm{LSR} ∼\sim245 km s−1^{-1} towards the southeast of the SNR using ASTE 12^{12}CO(JJ = 3-2) data at an angular resolution of ∼\sim25"" (∼\sim6 pc in the LMC). Using the ALMA 12^{12}CO(JJ = 1-0) data, we have spatially resolved CO clouds along the southeastern edge of the SNR with an angular resolution of ∼\sim1.8"" (∼\sim0.4 pc in the LMC). The molecular clouds show an expanding gas motion in the position-velocity diagram with an expansion velocity of ∼5\sim5 km s−1^{-1}. The spatial extent of the expanding shell is roughly similar to that of the SNR. We also find tiny molecular clumps in the directions of optical nebula knots. We present a possible scenario that N103B exploded in the wind-bubble formed by the accretion winds from the progenitor system, and is now interacting with the dense gas wall. This is consistent with a single-degenerate scenario.Comment: 12 pages, 1 table, 8 figures, accepted for publication in The Astrophysical Journal (ApJ

    Neutrino oscillations from relativistic flavor currents

    Full text link
    By resorting to recent results on the relativistic currents for mixed (flavor) fields, we calculate a space-time dependent neutrino oscillation formula in Quantum Field Theory. Our formulation provides an alternative to existing approaches for the derivation of space dependent oscillation formulas and it also accounts for the corrections due to the non-trivial nature of the flavor vacuum. By exploring different limits of our formula, we recover already known results. We study in detail the case of one-dimensional propagation with gaussian wavepackets both in the relativistic and in the non-relativistic regions: in the last case, numerical evaluations of our result show significant deviations from the standard formula.Comment: 16 pages, 4 figures, RevTe

    ALMA CO Observations of Supernova Remnant N63A in the Large Magellanic Cloud: Discovery of Dense Molecular Clouds Embedded within Shock-Ionized and Photoionized Nebulae

    Full text link
    We carried out new 12^{12}CO(JJ = 1-0, 3-2) observations of a N63A supernova remnant (SNR) from the LMC using ALMA and ASTE. We find three giant molecular clouds toward the northeast, east, and near the center of the SNR. Using the ALMA data, we spatially resolved clumpy molecular clouds embedded within the optical nebulae in both the shock-ionized and photoionized lobes discovered by previous Hα\alpha and [S II] observations. The total mass of the molecular clouds is ∼\sim800800 M⊙M_{\odot} for the shock-ionized region and ∼\sim17001700 M⊙M_{\odot} for the photoionized region. Spatially resolved X-ray spectroscopy reveals that the absorbing column densities toward the molecular clouds are ∼\sim1.51.5-6.0×10216.0\times10^{21} cm−2^{-2}, which are ∼\sim1.51.5-1515 times less than the averaged interstellar proton column densities for each region. This means that the X-rays are produced not only behind the molecular clouds, but also in front of them. We conclude that the dense molecular clouds have been completely engulfed by the shock waves, but have still survived erosion owing to their high-density and short interacting time. The X-ray spectrum toward the gas clumps is well explained by an absorbed power-law or high-temperature plasma models in addition to the thermal plasma components, implying that the shock-cloud interaction is efficiently working for both the cases through the shock ionization and magnetic field amplification. If the hadronic gamma-ray is dominant in the GeV band, the total energy of cosmic-ray protons is calculated to be ∼\sim0.30.3-1.4×10491.4\times10^{49} erg with the estimated ISM proton density of ∼\sim190±90190\pm90 cm−3^{-3}, containing both the shock-ionized gas and neutral atomic hydrogen.Comment: 18 pages, 4 tables, 8 figures, accepted for publication in The Astrophysical Journal (ApJ

    Scalar density fluctuation at critical end point in NJL model

    Get PDF
    Soft mode near the critical end point in the phase diagram of two-flavor Nambu--Jona-Lasinio (NJL) model is investigated within the leading 1/N_c approximation with N_c being the number of the colors. It is explicitly shown by studying the spectral function of the scalar channel that the relevant soft mode is the scalar density fluctuation, which is coupled with the quark number density, while the sigma meson mode stays massive.Comment: 9 pages, 4 figure

    Pion photoproduction on the nucleon in the quark model

    Get PDF
    We present a detailed quark-model study of pion photoproduction within the effective Lagrangian approach. Cross sections and single-polarization observables are investigated for the four charge channels, γp→π+n\gamma p\to \pi^+ n, γn→π−p\gamma n\to \pi^- p, γp→π0p\gamma p\to \pi^0 p, and γn→π0n\gamma n\to \pi^0 n. Leaving the πNΔ\pi N\Delta coupling strength to be a free parameter, we obtain a reasonably consistent description of these four channels from threshold to the first resonance region. Within this effective Lagrangian approach, strongly constrainted by the quark model, we consider the issue of double-counting which may occur if additional {\it t}-channel contributions are included.Comment: Revtex, 35 pages, 16 eps figures; version to appear on PR
    • …
    corecore