361 research outputs found

    The dynamics of stellar disks in live dark-matter halos

    Get PDF
    Recent developments in computer hardware and software enable researchers to simulate the self-gravitating evolution of galaxies at a resolution comparable to the actual number of stars. Here we present the results of a series of such simulations. We performed NN-body simulations of disk galaxies with between 100 and 500 million particles over a wide range of initial conditions. Our calculations include a live bulge, disk, and dark matter halo, each of which is represented by self-gravitating particles in the NN-body code. The simulations are performed using the gravitational NN-body tree-code Bonsai running on the Piz Daint supercomputer. We find that the time scale over which the bar forms increases exponentially with decreasing disk-mass fraction and that the bar formation epoch exceeds a Hubble time when the disk-mass fraction is ∼0.35\sim0.35. These results can be explained with the swing-amplification theory. The condition for the formation of m=2m=2 spirals is consistent with that for the formation of the bar, which is also an m=2m=2 phenomenon. We further argue that the non-barred grand-design spiral galaxies are transitional, and that they evolve to barred galaxies on a dynamical timescale. We also confirm that the disk-mass fraction and shear rate are important parameters for the morphology of disk galaxies. The former affects the number of spiral arms and the bar formation epoch, and the latter determines the pitch angle of the spiral arms.Comment: 23 pages; 29 figures. Accepted by MNRA

    Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system

    Get PDF
    Controlled oxidation, such as disulfide bond formation in sperm nuclei and during ovulation, plays a fundamental role in mammalian reproduction. Excess oxidation, however, causes oxidative stress, resulting in the dysfunction of the reproductive process. Antioxidation reactions that reduce the levels of reactive oxygen species are of prime importance in reproductive systems in maintaining the quality of gametes and support reproduction. While anti-oxidative enzymes, such as superoxide dismutase and peroxidase, play a central role in eliminating oxidative stress, reduction-oxidation (redox) systems, comprised of mainly glutathione and thioredoxin, function to reduce the levels of oxidized molecules. Aldo-keto reductase, using NADPH as an electron donor, detoxifies carbonyl compounds resulting from the oxidation of lipids and proteins. Thus, many antioxidative and redox enzyme genes are expressed and aggressively protect gametes and embryos in reproductive systems

    Unveiling the roles of the glutathione redox system in vivo by analyzing genetically modified mice

    Get PDF
    Redox status affects various cellular activities, such as proliferation, differentiation, and death. Recent studies suggest pivotal roles of reactive oxygen species not only in pathogenesis under oxidative insult but also in intracellular signal transduction. Glutathione is present in several millimolar concentrations in the cytoplasm and has multiple roles in the regulation of cellular homeostasis. Two enzymes, γ-glutamylcysteine synthetase and glutathione synthetase, constitute the de novo synthesis machinery, while glutathione reductase is involved in the recycling of oxidized glutathione. Multidrug resistant proteins and some other transporters are responsible for exporting oxidized glutathione, glutathione conjugates, and S-nitrosoglutathione. In addition to antioxidation, glutathione is more positively involved in cellular activity via its sulfhydryl moiety of a molecule. Animals in which genes responsible for glutathione metabolism are genetically modified can be used as beneficial and reliable models to elucidate roles of glutathione in vivo. This review article overviews recent progress in works related to genetically modified rodents and advances in the elucidation of glutathione-mediated reactions

    Rabbit cardiac and slow-twitch muscle express the same phospholamban gene

    Get PDF
    AbstractThe nucleotide sequences of cDNAs encoding phospholamban were found to be virtually identical when the cDNA clones were isolated from rabbit slow-twitch (soleus) and rabbit cardiac muscle libraries. These findings demonstrate that both types of muscle express the same phospholamban gene. The deduced amino acid sequences of rabbit and dog phospholamban were identical except for a change from Asp (dog) to Glu (rabbit) at position 2. The nucleotide sequences of the 5′- and the very long 3′-untranslated regions of rabbit and dog phospholamban cDNAs also exhibited a high percentage of identity

    A Method for Direct Measurement of the First-Order Mass Moments of Human Body Segments

    Get PDF
    We propose a simple and direct method for measuring the first-order mass moment of a human body segment. With the proposed method, the first-order mass moment of the body segment can be directly measured by using only one precision scale and one digital camera. In the dummy mass experiment, the relative standard uncertainty of a single set of measurements of the first-order mass moment is estimated to be 1.7%. The measured value will be useful as a reference for evaluating the uncertainty of the body segment inertial parameters (BSPs) estimated using an indirect method

    Noninvasive assessment of left and right ventricular filling in myocardial infarction with a two-dimensional Doppler echocardiography method

    Get PDF
    Inflow characteristics of left and right ventricular filling were assessed in 40 patients with myocardial infarction and in 10 normal subjects by pulsed Doppler echocardiography. Patients with myocardial infarction were subdivided into four groups, focusing on the involvement of right ventricular and septal branches of the coronary arteries. Group I consisted of 11 patients with anterior infarction who showed an obstructive lesion of the proximal left anterior descending branch involving the first septal perforator with a patent right coronary artery. Group II consisted of 10 patients with inferior infarction who showed an obstructive lesion of the proximal right coronary artery involving the right ventricular branch. Group III consisted of 12 patients with both anterior and inferior infarction who showed obstructive lesions of both the proximal left anterior descending branch and the right coronary artery involving the right ventricular branch. Group IV consisted of seven patients with lateral infarction who showed an obstructive lesion of the diagonal branch or branches of the circumflex coronary artery with a patent left anterior descending branch and right coronary artery.Three measurements were performed from the trans-mitral and transtricuspidal inflow velocity patterns to assess the left and right ventricular diastolic behaviors. These measurements were: 1) acceleration half-time, 2) deceleration half-time of early diastolic rapid inflow, and 3) the ratio of the peak velocity of early diastolic rapid inflow to that of the late diastolic inflow due to the atrial contraction.Impaired diastolic filling of the left ventricle compensated by enhanced left atrial contraction was observed in patients with myocardial infarction from groups I, II, III and IV. Impaired diastolic filling of the right ventricle compensated by enhanced right atrial contraction was revealed in groups I, II and III. It is supposed that myocardial damage of the interventricular septum and a part of the right ventricular anterior wall perfused from the left anterior descending branch might be one of the causes for mildly impaired diastolic filling of the right ventricle in group I patients with a patent right coronary artery

    Endoplasmic reticulum thiol oxidase deficiency leads to ascorbic acid depletion and noncanonical scurvy in mice

    Get PDF
    none5sì: Endoplasmic reticulum (ER) thiol oxidases initiate a disulfide relay to oxidatively fold secreted proteins. We found that combined loss-of-function mutations in genes encoding the ER thiol oxidases ERO1α, ERO1β, and PRDX4 compromised the extracellular matrix in mice and interfered with the intracellular maturation of procollagen. These severe abnormalities were associated with an unexpectedly modest delay in disulfide bond formation in secreted proteins but a profound, 5-fold lower procollagen 4-hydroxyproline content and enhanced cysteinyl sulfenic acid modification of ER proteins. Tissue ascorbic acid content was lower in mutant mice, and ascorbic acid supplementation improved procollagen maturation and lowered sulfenic acid content in vivo. In vitro, the presence of a sulfenic acid donor accelerated the oxidative inactivation of ascorbate by an H(2)O(2)-generating system. Compromised ER disulfide relay thus exposes protein thiols to competing oxidation to sulfenic acid, resulting in depletion of ascorbic acid, impaired procollagen proline 4-hydroxylation, and a noncanonical form of scurvy.openZito, Ester; Hansen, Henning Gram; Yeo, Giles S H; Fujii, Junichi; Ron, DavidZito, Ester; Hansen, Henning Gram; Yeo, Giles S H; Fujii, Junichi; Ron, Davi

    Adsorption of benzene derivatives on allophane

    Get PDF
    The adsorption properties of benzene derivatives from water on allophane, extracted from soil, have been investigated by UV and FTIR spectroscopic measurements. Allophane adsorbs benzoic acid, phthalic acid, benzaldehyde, ethyl benzoate, and diethyl phthalate. Benzoic acid, phthalic acid, and benzaldehyde formed carboxylate anions on the positive sites of the hydrated alumina surface of allophane. In the case of adsorption from an acidic solution (pH 2), a small amount of a neutral species of benzoic acid was detected on the allophane. Ethyl benzoate and diethyl phthalate were adsorbed by an interaction between their carbonyl groups and the hydroxyl groups of the allophane. It was confirmed that allophane has an adsorption ability for the benzene derivatives that are not only ionic but also polar molecules. Allophane was found to be available as an absorbent for use in water purification by a simple procedure.ArticleAPPLIED CLAY SCIENCE. 43(2):160-163 (2009)journal articl

    Impact of bar resonances in the velocity-space distribution of the solar neighbourhood stars in a self-consistent NN-body Galactic disc simulation

    Get PDF
    The velocity-space distribution of the solar neighbourhood stars shows complex substructures. Most of the previous studies use static potentials to investigate their origins. Instead we use a self-consistent NN-body model of the Milky Way, whose potential is asymmetric and evolves with time. In this paper, we quantitatively evaluate the similarities of the velocity-space distributions in the NN-body model and that of the solar neighbourhood, using Kullback-Leibler divergence (KLD). The KLD analysis shows the time evolution and spatial variation of the velocity-space distribution. The KLD fluctuates with time, which indicates the velocity-space distribution at a fixed position is not always similar to that of the solar neighbourhood. Some positions show velocity-space distributions with small KLDs (high similarities) more frequently than others. One of them locates at (R,ϕ)=(8.2  kpc,30∘)(R,\phi)=(8.2\;\mathrm{kpc}, 30^{\circ}), where RR and ϕ\phi are the distance from the galactic centre and the angle with respect to the bar's major axis, respectively. The detection frequency is higher in the inter-arm regions than in the arm regions. In the velocity maps with small KLDs, we identify the velocity-space substructures, which consist of particles trapped in bar resonances. The bar resonances have significant impact on the stellar velocity-space distribution even though the galactic potential is not static.Comment: 9 pages, 11 figures. Accepted by MNRA
    • …
    corecore