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ABSTRACT
The velocity-space distribution of the solar neighbourhood stars shows complex substructures. Most of the previous studies use
static potentials to investigate their origins. Instead we use a self-consistent 𝑁-body model of the Milky Way, whose potential is
asymmetric and evolves with time. In this paper, we quantitatively evaluate the similarities of the velocity-space distributions in
the 𝑁-body model and that of the solar neighbourhood, using Kullback-Leibler divergence (KLD). The KLD analysis shows the
time evolution and spatial variation of the velocity-space distribution. The KLD fluctuates with time, which indicates the velocity-
space distribution at a fixed position is not always similar to that of the solar neighbourhood. Some positions show velocity-space
distributions with small KLDs (high similarities) more frequently than others. One of them locates at (𝑅, 𝜙) = (8.2 kpc, 30◦),
where 𝑅 and 𝜙 are the distance from the galactic centre and the angle with respect to the bar’s major axis, respectively. The
detection frequency is higher in the inter-arm regions than in the arm regions. In the velocity maps with small KLDs, we identify
the velocity-space substructures, which consist of particles trapped in bar resonances. The bar resonances have significant impact
on the stellar velocity-space distribution even though the galactic potential is not static.

Key words: methods: numerical – Galaxy: disc – Galaxy: kinematics and dynamics – solar neighbourhood – Galaxy: structure.

1 INTRODUCTION

The latest data release, Gaia Early Data Release 3 (EDR3; Gaia
Collaboration et al. 2016, 2021), contains the astrometric data for
about 1.8 billion objects. The uncertainties in parallax, sky posi-
tion, and proper motion for the brightest (Gaia 𝐺-band magnitude
𝐺 < 15 mag) samples are 0.02–0.03 mas, 0.01–0.02 mas, and 0.02–
0.03 mas yr−1, respectively. Such large amount of high quality data
reveals the detailed phase-space distribution of the stars, which re-
flects the gravitational potential of the Milky Way (MW).
Fig. 1, (created using Gaia data, see Section 2.3 for details) shows

the velocity-space distribution for the stars within 200 pc from the
Sun. We see some substructure (moving groups) in the figure (Gaia
Collaboration et al. 2018). The names and locations of the major
substructures are also shown in this figure. The Hercules stream is
one of the most prominent substructures. It was already identified
from the Hipparcos (ESA 1997; Perryman et al. 1997) observation
(Dehnen 1998).
These velocity-space substructures are not expected in axisym-

metric discs, therefore their origins are often linked with Galactic
non-axisymmetric structures such as the bar and the spiral arms.
Dehnen (1999, 2000) demonstrated that stars trapped in 2:1 outer
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Figure 1. Solar neighbourhood star distribution in radial velocity versus
azimuthal velocity (𝑣𝑅-𝑣𝜙) space. This plot is based on the Gaia data as
described in Section 2.3.

Lindblad resonance (OLR) can form Hercules-like streams when us-
ing test particle simulations. In order to locate the 2:1OLR in the solar
neighbourhood, the bar’s pattern speed of Ωb & 50 km s−1 kpc−1 is
required (Dehnen 1999, 2000; Fux 2001; Minchev et al. 2007, 2010;
Antoja et al. 2014; Monari et al. 2017a,b; Fragkoudi et al. 2019;
Melnik et al. 2021). It is faster than the recently measured values of
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2 T. Asano et al.

Ωb ' 40 km s−1 kpc−1 (Bovy et al. 2019; Sanders et al. 2019). The
measurements of the bar length (Wegg et al. 2015), comparison be-
tween hydrodynamical simulations and CO and H I gas observations
(Sormani et al. 2015; Li et al. 2016, 2022), and dynamical models of
bulge stars (Portail et al. 2017; Clarke et al. 2019; Clarke & Gerhard
2022) also support the slow bar.
Trapping in the bar’s corotation resonance (CR) is more favoured

as a possible origin of the Hercules stream in the case of the slow bar.
Pérez-Villegas et al. (2017) performed test particle simulations in a
MW potential model made with made-to-measure (M2M) method
(Portail et al. 2017) and found that particles in CR form a Hercules-
like stream. The same scenario is proposed from 𝑁-body simulations
(D’Onghia & L. Aguerri 2020) and analytic models (Monari et al.
2019a,b; Binney 2020; Chiba et al. 2021). Guiding radii of higher or-
der bar resonances like 4:1 OLR are located around the Sun’s radius
of 𝑅0 ' 8.2 kpc (Gravity Collaboration et al. 2019) if the bar has a
moderate pattern speed of Ωb ' 40–45 km s−1 kpc−1. They are also
possible origins for the Hercules stream and the other velocity-space
substructures (Monari et al. 2017c; Hattori et al. 2019; Monari et al.
2019a; Moreno et al. 2021). Spiral arm resonances or their com-
bination with bar resonances also form velocity-space substructures
(Hunt et al. 2018, 2019; Hattori et al. 2019;Michtchenko et al. 2018a,
2019; Barros et al. 2020).
Satellite galaxies such as the Sagittarius dwarf galaxy can impact

the local stellar kinematics. Antoja et al. (2018) discovered the phase
spirals (or snail shells) in 𝑧-𝑣𝑧 plane. One promising scenario for
this origin is that the MW disc is perturbed by the Sagittarius dwarf
galaxy. In the same way, overdensities in 𝑣𝑅-𝑣𝜙 space may also be
the result of the external perturbation (Khanna et al. 2019; Laporte
et al. 2019; Li & Shen 2020; Hunt et al. 2021).
Some scenarios for explaining the origin of the velocity-space

substructures are proposed as introduced above. However, we do not
have a widely accepted answer for their origin. Some studies tackle
the problem by focusing on not only the velocity space but also the
other phase-space sections such as the radial action versus azimuthal
action (𝐽𝑅-𝐽𝜙) plane (Hunt & Bovy 2018; Hunt et al. 2019; Trick
et al. 2019; Trick 2022; Kawata et al. 2021; Trick et al. 2021) or
chemical information (e.g. Hattori et al. 2019; Chiba & Schönrich
2021; Wheeler et al. 2021).
Most of the above studies use test particle simulations in static po-

tentials and do not focus on time evolution of the potentials. Recently,
Chiba et al. (2021) and Chiba & Schönrich (2021) modelled the evo-
lution of resonant orbits in the Galactic potential with a decelerating
bar using secular perturbation theory and test particle simulations.
The observed Hercules stream is highly asymmetric in 𝑣𝑅 . Their
model successfully reproduces the feature by trapping in the CR of
the decelerating bar. Self-consistent 𝑁-body simulations suggest that
the MW has experienced a more complex structural evolution in ad-
dition to the bar’s speed slowing down (Sellwood & Carlberg 1984;
Sellwood & Sparke 1988; Baba et al. 2009; Fujii et al. 2011; Grand
et al. 2012a,b; Baba et al. 2013; D’Onghia et al. 2013; Khoperskov
et al. 2020b; Tepper-Garcia et al. 2021). Such a complex time evolu-
tion possibly impacts the stellar orbits and phase-space distributions.
In our previous study (Asano et al. 2020), we analysed a high-

resolution 𝑁-body simulation of the MW and found a Hercules-like
stream in the final snapshot. Orbital frequency analysis confirmed
that it is made from 4:1 OLR and 5:1 OLR. We concluded that the
trimodal structure of the Hercules stream in theMWcan be explained
by 4:1 OLR, 5:1 OLR, and CR in the bar’s pattern speed ofΩb ' 40–
45km s−1 kpc−1. This study confirmed that Hercules-like streams
originating from the bar resonance exist in at least one position in
one snapshot. In this paper, we analyse the same simulation data but

put the focus on the time evolution and spatial variation of the lo-
cal velocity-space distributions. We use Kullback-Leibler divergence
(KLD) tomeasure the similarity of the velocity-space distributions in
the simulation and that of the solar neighbourhood stars. In Section 2,
we briefly introduce our 𝑁-body model and describe the analysis. In
Section 3, we show how velocity-space distributions and the KLDs
vary as functions of time and spatial positions. In Section 4, we per-
form the obit analysis for the particles around the position where the
velocity-space distributions with high similarities are detected. This
analysis shows that velocity-space substructures such as Hercules
stream are made from bar resonances. The summary of this paper is
given in Section 5.

2 𝑁-BODY SIMULATIONS AND ANALYSIS

2.1 𝑁-body simulations

Fujii et al. (2019) performed 𝑁-body simulations of MW-like galax-
ies. We use one of their models, MWa. This model is a MW-like
galaxy composed of a live stellar disc, a live classical bulge, and a
live dark-matter (DM) halo. The initial conditions were generated
using GalactICS (Kuĳken & Dubinski 1995; Widrow & Dubinski
2005). The stellar disc follows an exponential profile with a mass of
3.73×1010𝑀� , an initial scale-length (𝑅d) of 2.3 kpc, and an initial
scale-height of 0.2 pc. The classical bulge follows the Hernquist pro-
file (Hernquist 1990), whosemass and scale-length are 5.42×109𝑀�
and 750 pc, respectively. The DM halo follows the Navarro-Frenk-
White (NFW) profile (Navarro et al. 1997), whose mass and scale
radius are 8.68 × 1011𝑀� and 10 kpc, respectively. The number of
disc, bulge, and halo particles are 208M, 30M, and 4.9B, respec-
tively. A more detailed model description can be found in Fujii et al.
(2019). The simulations were performed using the parallel GPU tree-
code, BONSAI1 (Bédorf et al. 2012, 2014) using the Piz Daint GPU
supercomputer.
The simulation was started from an axisymmetric disc without

any structure at 𝑡 = 0 Gyr and was continued up to 𝑡 = 10 Gyr.
Fig. 2 shows the face-on views of the 𝑁-body model at 𝑡 = 2.5, 5,
7.5, 8.97, 9.29, and 10 Gyr. In the simulation the bar and spiral arms
form spontaneously due to instabilities. The spiral structures aremost
prominent at 𝑡 ∼ 5 Gyr after which they become fainter due to the
dynamical heating of the disc.
The simulated and observed rotation curves are plotted in Fig. 3.

The grey dots with error bars are taken from Sofue (2017). The
orange shaded region indicates the range of 𝑣c = 238 ± 14 km s−1,
which is the circular velocity at the Sun’s radius estimated by Bland-
Hawthorn & Gerhard (2016). The 𝑁-body model well reproduces
the other disc and bulge properties of the MW. See Fujii et al. (2019)
for a more detailed comparison with observations.
In this work we determine the bar’s pattern speed using the Fourier

decomposition as was also done in Fujii et al. (2019) and Asano
et al. (2020). We divide the galactic disc into annuli with a width of
1 kpc, and then Fourier decompose the disc’s surface density in each
annulus:

Σ(𝑅, 𝜙) =
∞∑︁

𝑚=0
𝐴𝑚 (𝑅) exp{𝑖𝑚 [𝜙 − 𝜙𝑚 (𝑅)]}, (1)

where 𝐴𝑚 (𝑅) and 𝜙𝑚 (𝑅) are the 𝑚-th mode’s amplitude and phase
angle, respectively. We define 𝜙2 (𝑅) averaged in 𝑅 < 3 kpc as the
angle of the bar in the snapshot (see also Fujii et al. 2019). The bar’s

1 https://github.com/treecode/Bonsai
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Figure 2. Face-on views of the MW model at 𝑡 = 2.5, 5, 7.5, 8.97, 9.29, and 10 Gyr. In Section 4, we see the velocity-space distributions at the positions
indicated by the red dots in the panels of 𝑡 =8.97 and 9.29 Gyr.
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Figure 3. The rotation curves of the 𝑁 -body model and the MW. The blue
line shows the rotation curve of the 𝑁 -body model at 𝑡 = 10. Gyr. The grey
dots show the observed rotation curve of the MW (Sofue 2017). The orange
shaded region indicates the observationally estimated circular velocity at the
Sun’s radius (Bland-Hawthorn & Gerhard 2016).

pattern speed, Ωb, is determined using the least squares fitting to
𝜙2 (𝑡) = Ωb𝑡 + 𝜙2,0. Fig. 4 and Fig. 5 show the time evolution of the
pattern speed and the Fourier amplitude |𝐴2 |, respectively. One can
see that after ∼ 2Gyr, a bar started to form, and continued to grow
until ∼ 5Gyr (Fig. 5). During the evolution, the bar slowed down
with oscillations up to ∼ 7Gyr (Fig. 4).
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Figure 4. Time evolution of the bar’s pattern speed.

2.2 Orbit analysis

Here, we summarise the orbit analysis method used to select particles
trapped in resonances. A more detailed descriptions can be found in
Asano et al. (2020).
Resonantly trapped particles are selected via their orbital fre-

quency ratios. We follow Ceverino & Klypin (2007)’s method to
compute orbital frequencies. We determine the radial frequency,Ω𝑅 ,
using the Discrete Fourier Transformation (DFT) for 𝑅(𝑖) where
𝑅(𝑖) (𝑖 = 1, . . . , 64) is a radial coordinate in the 𝑖-th snapshot.
We employ a zero-padding technique of Fourier transforming: 960

MNRAS 000, 1–10 (2021)
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Figure 5. Time evolution of the Fourier amplitude |𝐴2 (𝑅) | at 𝑅 = 1, 2, and
3 kpc.

zero points are added at the end of the data series. We then sam-
ple the frequency space with 512 points between 0 km s−1 kpc−1
and 315 km s−1 kpc−1, whereby the upper bound is given by the
Nyquist frequency. We identify Ω𝑅 as a frequency that causes a lo-
cal maximum in the Fourier spectrum. In contrast, the associated
angular frequency Ω𝜙 is determined via least-squares fitting instead
of DFT. From the snapshots, we collect, per particle, the series of
measured angles 𝜙(𝑖) as a function of time 𝑡 (𝑖), where 𝑖 iterates over
the 64 snapshots available. For each particle, this results in pairs
[𝑡 (𝑖), 𝜙(𝑖)] (𝑖 = 1, . . . , 64) to which we fit the function 𝜙 = Ω𝜙𝑡 +𝜙0
using a least squares method.
The resonance condition for 𝑚:𝑙 OLR are represented as 𝑚(Ω𝜙 −

Ωb) + 𝑙Ω𝑅 = 0. Orbits trapped in the resonance distribute around
−𝑙/𝑚 in the frequency ration ((Ω𝜙 − Ωb)/Ω𝑅) space. We select
particles whose frequency ratios are within a range of ±0.01 from
the exact resonance frequency ratio as particles trapped in the reso-
nance. As demonstrated in Asano et al. (2020), this procedure selects
resonantly trapped particles without contamination.

2.3 Analysis of the Gaia data

From the Gaia EDR3 catalogue, we select samples that satisfy
(1) a relative parallax error of less than 20% (𝜛/𝜎𝜛 > 5), (2)
the distance from the Sun is less than 200 pc (1/𝜛[mas] < 0.2),
and (3) the radial velocity error is less than 5 km s−1. We use
astropy.coordinates from the astropy (Astropy Collaboration
et al. 2013) Python package to convert from heliocentric to Galac-
tocentric coordinates. We assume that the distance of the Sun from
the Galactic centre is 𝑅0 = 8.178 kpc (Gravity Collaboration et al.
2019), and that the distance of the Sun from the Galactic mid-
plane is 𝑧0 = 20.8 pc (Bennett & Bovy 2019), whereby the ve-
locity of the Sun with respect to the local standard of rest (LSR)
is (𝑈� , 𝑉� ,𝑊�) = (11.1, 12.24, 7.25) km s−1 (Schönrich et al.
2010), and the azimuthal velocity ofΘ� +𝑉� = 247.4 km s−1 (Reid
& Brunthaler 2004; Gravity Collaboration et al. 2019).

2.4 Kullback-Leibler divergence

We use Kullback-Leibler divergence (KLD; Kullback & Leibler
1951) to quantitatively evaluate the similarity of the velocity-space

distributions in the simulation and that in the observation. KLD is
defined between two probability distributions. When 𝑝(𝑥) and 𝑞(𝑥)
are discrete distributions in a probability space X, the KLD between
them is defined as

𝐷 (𝑝 | |𝑞) =
∑︁
𝑥∈X

𝑝(𝑥) log 𝑝(𝑥)
𝑞(𝑥) . (2)

KLD satisfies the following properties like a ‘distance’ between 𝑝
and 𝑞.

(i) 𝐷 (𝑝 | |𝑞) ≥ 0.
(ii) 𝐷 (𝑝 | |𝑞) = 0 if and only if 𝑝 = 𝑞.

We note that𝐷 (𝑝 | |𝑞) is not equal to𝐷 (𝑞 | |𝑝), hence it is not a distance
in a mathematical sense. To be more precise, 𝐷 (𝑝 | |𝑞) represents how
a distribution 𝑞 differs from a reference distribution 𝑝. In this study
we would like to evaluate how well the velocity-space distributions
in the simulation reproduce that of the MW, hence 𝑝 and 𝑞 are
determined from the observation and the simulation, respectively.
The distribution 𝑝 is determined from the Gaia EDR3 data (Gaia
Collaboration et al. 2021). We first divide the velocity space in a grid
shape to convert the observation and simulation data to probability
distributions. There are some uncertainties in the rotation curves of
the MW and the Sun’s velocity with respect to the LSR (Bland-
Hawthorn & Gerhard 2016). To take the uncertainties into account,
we use relative velocities, �̂�𝑅 = (𝑣𝑅 − 𝑣𝑅)/𝑣𝜙 and �̂�𝜙 = (𝑣𝜙 −
𝑣𝜙)/𝑣𝜙 , instead of absolute values. Mean velocities (𝑣𝑅 , 𝑣𝜙) are
determined for the stars within 200 pc from the Sun. We divide the
�̂�𝑅 versus �̂�𝜙 space in a range of (−0.5, 0.5) × (−0.333, 0.333) into
48 × 32 cells. We determine the probability that we find a star in
a cell, dividing the star count in the cell by the total number of
stars in all the cells. Eq. (2) indicates that KLD can diverge if a
probability is zero in a cell (i.e. it does not contain stars). In order
to avoid that, we alternatively use the kernel density estimation (via
scipy.stats.gaussian_kde (Virtanen et al. 2020)) as value for
the empty cells. The value in a cell at (�̂�𝑅 , �̂�𝜙) is represented as

𝑓 (�̂�) =
𝑁∑︁
𝑖=1

∏
𝑗={𝑅,𝜙}

𝑤 𝑗

ℎ 𝑗
𝐾

(
�̂� 𝑗 − �̂�𝑖 𝑗
ℎ 𝑗

)
; 𝐾 (𝑥) = 1

√
2𝜋
exp

(
− 𝑥
2

2

)
.

(3)

𝑁 is the total number of the stars in the sampling volume. v̂𝑖 is the
relative velocity of the 𝑖-th star. 𝑤𝑅 and 𝑤𝜙 are the cell widths with
𝑤𝑅 = 𝑤𝜙 = 0.0208. Kernel widths ℎ𝑅 and ℎ𝜙 are determined with
the method described in Scott (2015). The typical values of ℎ𝑅 and
ℎ𝜙 are 0.03 and 0.02, respectively.

3 RESULTS

3.1 Time evolution of the KLDs

In this section, we investigate the time evolution of the KLDs and
velocity-space distributions in the simulation. We evaluate KLDs
between the velocity-space distribution for the stars within 200 pc
from the Sun and those for particles within 200 pc from (𝑅, 𝜙) =

(7 kpc, 25◦), (8 kpc, 25◦), and (9 kpc, 25◦) in the simulation, where
𝑅 and 𝜙 are the distance from the galactic centre and the angle with
respect to the bar’s major axis, respectively.We assume that the ‘Sun’
in the simulation locates on the galactic mid-plane (𝑧 = 0). Fig. 6
shows the KLDs at the three points as a function of time for both
the long-term and short-term evolution. On a long time scale they
decrease with time, and on a short time scale they oscillate. The
long-term evolution indicates that the velocity-space distributions

MNRAS 000, 1–10 (2021)
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Figure 6. Left: Time evolution of the KLDs at fixed positions in the simulation. Blue, red, and yellow lines show the KLDs at (𝑅, 𝜙) = (7 kpc, 25◦) ,
(8 kpc, 25◦) , and (9 kpc, 25◦) , respectively. Right: Same as the left panel but for the later time period

are more similar to that in the observed solar neighbourhood during
the later epochs than in the early epochs of the simulation. This is a
natural consequence of the setup of the simulation. Fujii et al. (2019)
adjusted the initial conditions of the simulation so that the final
snapshot fits the observations. The short-term evolution indicates
that the similarity of the velocity-space distribution fluctuates rapidly.
Even if we find a velocity-space distribution similar to the observed
one at a certain position at a certain time, a velocity-space distribution
at the same position at another time is not necessarily similar to the
observed one.
We can identify the correlation between the time evolutions of the

KLDs and the time evolution of the bar by comparing Fig. 4 and
Fig. 6. A clear bar structure appears at 𝑡 ' 3 Gyr from the beginning
of the simulation. The KLDs start decreasing at this time. From 𝑡 '
3 Gyr to 𝑡 ' 7 Gyr, the bar’s pattern speed slows down. During this
phase, the KLDs also decrease with time. The bar is more stable after
𝑡 ' 7 Gyr than before that although the pattern speed shows small
fluctuations. In this epoch, the KLDs at (𝑅, 𝜙) = (7 kpc, 25◦) and
(8 kpc, 25◦) do not evolvemonotonously but fluctuate around 0.3 and
0.2, respectively. TheKLDat (9 kpc, 25◦) decreases slowly. The bar’s
pattern speed is a key parameter in discussions on bar resonances. It
determines the resonance radiiwhen azimuthal and radial frequencies
are given as functions of radial coordinate 𝑅 (Binney & Tremaine
2008). This correlation between the KLDs and the bar’s pattern speed
implies that the bar resonances play an important role in regulating
the local velocity-space distributions. In Section 4, we discuss the
relation between the velocity-space substructures and bar resonances.
The fluctuations of the KLDs are also important. Although the

KLD at (𝑅, 𝜙) = (8 kpc, 25◦) is smaller than those at the other two
positions at 𝑡 & 7 Gyr, it fluctuates with time. We do not always
observe the velocity-space distributions similar to that in the solar
neighbourhood at this position. This emphasizes the non-static nature
of the galaxy in the simulation.

3.2 Angle with respect to the bar and spirals

3.2.1 Angle with respect to the bar

In the previous section we saw that after 𝑡 ' 7 Gyr the KLD
at (𝑅, 𝜙) = (8 kpc, 25◦) tends to be smaller than at (𝑅, 𝜙) =

(7 kpc, 25◦) and (𝑅, 𝜙) = (9 kpc, 25◦). Here, we investigatewhere in

0.2 0.4 0.6 0.8
KLD

0

20

40

60

N

Figure 7. Distribution of the KLDs at 𝑡 = 10 Gyr. The black line shows the
histogram of the KLDs at all of the positions where the KLDs are computed.
The region of KLD < 0.2 is filled with red.

the disc we often detect velocity-space distributions similar to that in
the solar neighbourhood.We evaluate the KLDs of the velocity-space
distributions at 648 points in the disc in the snapshots after 𝑡 = 7 Gyr.
Their positions in the galactocentric cylindrical coordinate are
𝑅 = 6 kpc + Δ𝑅 × 𝑖 (𝑖 = 0, . . . , 8),
𝜙 = −180◦ + Δ𝜙 × 𝑗 ( 𝑗 = 0, . . . , 71),
𝑧 = 0 kpc,

(4)

where Δ𝑅 = 0.5 kpc and Δ𝜙 = 5◦. We determine the velocity-space
distribution for particles within 200 pc from each of the points and
compute the KLD. We define that the velocity-space distribution in
the simulation is similar to that in the solar neighbourhood if its KLD
is less than 0.2. We select the threshold of 0.2 because the KLD of
the velocity-space distribution for the particles within 200 pc from
(𝑅, 𝜙) = (8 kpc, 20◦) at 𝑡 = 10 Gyr is ∼ 0.2. The velocity map
is the one which we judged, by eye, to be similar to the map in
the observation in our previous study (Asano et al. 2020). Fig. 7
shows the distribution of the KLDs at 𝑡 = 10Gyr. The velocity-space
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Figure 8. Positions where the velocity maps match that of the solar neigh-
bourhood. The colours of the points represent the fractions of the number of
times where KLDs less than 0.2 are detected at each position. The horizontal
line and the solid arrow represent the bar orientation and the direction of the
galaxy rotation, respectively. The black line represents the angle with respect
to the bar of 𝜙 = 25◦

distributions whose KLDs lie in the red filled region (KLD < 0.2)
have sufficiently high similarities.
Fig. 8 shows the number of the times that the KLDs less than 0.2

are detected at each position. Velocity-space distributions with these
small KLDs are detected more frequently at 𝑅 = 8 kpc and 8.5 kpc
than the other radii. Especially around (𝑅, 𝜙) = (8 kpc, 20◦) and
(𝑅, 𝜙) = (8.5 kpc, 50◦), the KLDs are smaller than 0.2 for more
than 50% of the analysed snapshots. On the other hand, at 𝑅 . 7 kpc
or 𝑅 & 9 kpc the KLDs are larger than 0.2 for almost every snapshot.
Fujii et al. (2019) obtained similar results using a simpler analysis

method. They fitted the sum of two Gaussian functions with the
particle distributions in 𝑣𝑅 and detected two-peak (i.e. Hercules-
like) features. Hercules-like features do not always appear at a fixed
position. The detection frequency is at most 50% around 𝑅 ' 9 kpc,
which is slightly outside the 2:1 OLR radius. We only seldom detect
velocity-space distributions similar to that in the solar neighbourhood
around 𝑅 ' 9 kpc. The differencemay be due to that Fujii et al. (2019)
focused only on one dimensional velocity (𝑣𝑅) distributions.
Fig 9 shows the 𝜙 dependence of the KLD more clearly. In the

figure, we plot the histograms for the angles of positions where
the KLDs are less than 0.2 at 𝑅 =7.5 kpc, 8 kpc, 8.2 kpc, 8.5 kpc,
and 9 kpc. As already seen in Fig. 8, these small KLDs are more
frequently detected at 𝑅 =8–8.5 kpc. These values are close to dis-
tance between the Sun and the Galactic centre (Bland-Hawthorn &
Gerhard 2016). The peaks of the histograms differ by 𝑅. The peak
moves in the positive direction of 𝜙 as 𝑅 increases. The peak of the
histogram at 𝑅 = 8.2 kpc locates at 𝜙 ' 30◦, which is consistent
with observationally suggested bar angle (Bissantz & Gerhard 2002;
Rattenbury et al. 2007; Cao et al. 2013; Wegg & Gerhard 2013).
The 𝑅 and 𝜙 dependence of the KLD also implies that the velocity-
space distributions are related to bar resonances. Particles trapped in
bar resonances do not distribute uniformly in the disc, instead their
distributions are dependent on 𝑅 and 𝜙. (Ceverino & Klypin 2007;
Khoperskov et al. 2020a).
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Figure 9. Histograms of the angles where the KLD of velocity distribution is
less than 0.2. The angle 𝜙 is with respect to the bar. The red, magenta, black,
blue, and yellow lines show the histograms at 𝑅 = 7.5 kpc, 8 kpc, 8.2 kpc,
8.5 kpc, and 9 kpc, respectively.
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Figure 10. Histograms of the angles where the KLD of velocity distribution
is less than 0.2. Blue, yellow, and magenta lines show the histograms in the
cases of weak ( |𝐴2 | < 0.02), intermediate (0.02 < |𝐴2 | < 0.04), and strong
(0.04 < |𝐴2 |) spirals, respectively. The black line shows the histogram for
all the spiral strength.

3.2.2 Angle with respect to the spirals

Not only the bar but also the spiral arms have impact on the stellar
distribution and KLD. We define the spiral position as a phase angle
of Fourier 𝑚 = 2 mode 𝜙2 (𝑅) and define the spiral strength as a
Fourier amplitude |𝐴2 (𝑅) |. In AppendixA, the phase angles of𝑚 =2,
3, and 4 modes are plotted on the density maps of the 𝑅-𝜙 plane. The
𝑚 = 2mode traces the spiral arms better than the othermodes. Fig. 10
shows the histograms for the 𝜙 of the positions with KLD < 0.2
for three spiral strength cases: |𝐴2 | < 0.02, 0.02 < |𝐴2 | < 0.04,
and 0.04 < |𝐴2 |. Here, the analysis is limited to the positions at
𝑅 = 8 kpc and 8.5 kpc. The shape of the histograms depends on the
spiral strength. The histogram of 0.02 < |𝐴2 | < 0.04 has a peak at
𝜙 ' 30◦ and a valley at 𝜙 ' 110◦. The histogram of |𝐴2 | < 0.02
is less steep than the one of 0.02 < |𝐴2 | < 0.04. We see a plateau
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Figure 11. Same as Fig. 10 but now for the angle with respect to the spirals
(𝜙 − 𝜙2).

around 𝜙 = 0◦–40◦. The histogram of |𝐴2 | > 0.04 is almost flat.
When the spiral arm is strong, there is no specific angle where we
often detect velocity distributions with small KLDs.
Fig. 11 shows the same histograms as Fig. 10 but now with respect

to the spirals (𝜙 − 𝜙2). The histogram for all the spiral strengths
(black line) shows a peak around 𝜙 = 130◦. The spiral positions are
𝜙 = 0◦ and 180◦, therefore the peak is at the inter-arm region, which
is consistent with observations. Very long baseline interferometry
(VLBI) observations suggest that the Sun is located in the inter-
arm regions of the MW’s main spiral arms Perseus and Sagittarius-
Carina (Reid et al. 2019; VERA Collaboration et al. 2020). We
note that the Sun may be close to the ‘Local Arm’, but that its
features are not as clear as the Perseus or Sagittarius-Carina arms
(see Miyachi et al. 2019 and the references therein). The histograms
in the cases of |𝐴2 | < 0.02 and |𝐴2 | > 0.04 are flatter than those of
0.02 < |𝐴2 | < 0.04.
It is unclear why the velocity-space distributions with small KLDs

are more frequently detected in the inter-arm regions than in the
arm regions. One possible explanation is that the spiral arms disrupt
the velocity-space substructure as formed by the bar resonances.
However, spiral arms can also form velocity-space substructures as
shown in Khoperskov & Gerhard (2021) where direct imprints of
the spiral arms appear as velocity-space substructures. In Section 4
we will see that the 𝑁-body model does not reproduce the detailed
Hyades-Pleiades stream structures. Bar resonances cannot explain
the origin of these structures and thus they may be due to the spiral
arms.

4 DISCUSSIONS

The previous section shows that the velocity-space distributions fluc-
tuate with time in the simulation. However, some specific positions,
namely (𝑅, 𝜙) ' (8 kpc, 20◦), (8.2 kpc, 30◦), and (8.5 kpc, 50◦),
frequently show velocity distributions similar to that in the solar
neighbourhood. The (𝑅, 𝜙) dependence on the KLD implies that
the bar resonances influence the velocity-space distribution. In this
section, we discuss how the bar resonances impact the local velocity-
space distributions at these positions.
Fig. 12 shows the velocity-space space distributions for the par-

ticles within 200 pc from (𝑅, 𝜙) = (8 kpc, 15◦) at 𝑡 = 9.29 Gyr.

The KLD of this distribution is 0.145. This is one of the smallest
values for the velocity-space distributions at 𝑅 = 8 kpc. The map
in the left panel of Fig. 12 shows some substructures similar to that
in Fig. 1. Hercules-like, horn-like, Sirius-like, and hat-like struc-
tures locate at (𝑣𝑅 , 𝑣𝜙) ' (10, 200) km s−1, (−50, 220) km s−1,
(−50, 240) km s−1, and (0, 270) km s−1, respectively. We compute
the orbital frequencies of the particles around (𝑅, 𝜙) = (8 kpc, 15◦)
and select the ones trapped in bar resonances based on the frequency
ratios. We mainly identify five resonances namely 2:1, 5:2, 3:1 ,4:1,
and 5:1 OLRs. The right panel of Fig. 12 shows their distributions
in the velocity space. Cyan, yellow, green, magenta, and orange dots
indicate particles trapped in 2:1, 5:2, 3:1, 4:1, 5:1 OLRs, respec-
tively. The trajectories of the resonant orbits are shown in Fig. 6 and
the supplementary data of Asano et al. (2020). The Hercules-like
stream is made from the 4:1 and 5:1 OLRs. Particles trapped in 2:1
and 3:1 OLRs contribute to the hat-like and horn-like structures re-
spectively. Asano et al. (2020) identified the same correspondence
between the resonances and the velocity-space substructures around
(𝑅, 𝜙) = (8 kpc, 20◦) at 𝑡 = 10 Gyr. Although the 5:2 OLR is
not prominent at 𝑡 = 10 Gyr, there is still a large number of parti-
cles trapped in this resonance and they form a Sirius-like stream at
𝑡 = 9.29 Gyr.
Fig. 13 shows the same velocity-space distribution as Fig. 12 but

now for the particles within 200 pc from (𝑅, 𝜙) = (8.5 kpc, 50◦)
at 𝑡 = 8.97 Gyr. The velocity-space distribution also has one of
the smallest KLDs of ∼ 0.145. Visible in the left panel are Hercules-
like, horn-like, Sirius-like, and hat-like substructures. In this case, the
horn-like, Sirius-like, and hat-like substructures consist of particles
trapped in 3:1, 5:2, and 2:1 OLRs, respectively. The right panel
shows that the particles trapped in 4:1 and 5:1 OLRs are part of the
Hercules-like stream, but the number of the particles in 5:1 OLR is
smaller than that in Fig. 12. This is because 𝑅 = 8.5 kpc is further
from the 5:1 OLR radius. It is located at around 𝑅 ' 6.5 kpc for the
bar pattern speed of Ωb ' 45 km s−1 kpc−1, which is the typical
value for the latter epochs in our simulation.
The resonances of odd modes such as 3:1, 5:1, and 5:2 OLRs

are due to the asymmetry of the bar potential, which is a natural
consequence of 𝑁-body simulations. Most of the studies using test
particle simulations assume symmetric bar potentials, whose Fourier
decompositions include only even modes. Bars in 𝑁-body models
are not completely symmetric, and therefore odd-mode resonances
arise. Monari et al. (2019a) studied the impact of higher-order bar
resonances on the velocity-space distribution of stars. The method
used and the details of the results are different from ours. In both
theirs and our models the hat is made from 2:1 OLR. However, the
correspondences between the other substructures and bar resonances
are different from ours. In their model, Hercules, Serius, and horn,
structures are made from CR, 4:1, and 6:1 OLR respectively. In their
model the Galactic potential is based on the M2M method (Portail
et al. 2017). The bar’s pattern speed is Ωb = 39 km s−1 kpc−1, and
the CR radius is located at 𝑅 ' 6 kpc. On the other hand, the CR
radius of our 𝑁-body model is 𝑅 ' 5 kpc and we do not observe
particles in CR at 𝑅 ' 8–8.5 kpc. The bar potential of Monari et al.
(2019a) comprises the Fourier components of𝑚 = 2, 3, 4, and 6. The
lack of the 5:1/5:2 OLR might be due to the lack of the 𝑚 = 5mode.
The rotation curves (i.e., the axisymmetric component of theGalactic
potential) also affect the distribution of the resonantly trapped stars.
Particles in the 3:1 OLR distribute on the Hyades-Pleiades region

in addition to Horn. Trick (2022) also obtained a similar result that
the location of 3:1 OLR’s resonance line is close to the ridge of
Hyades and Horn in action space. The compact two peaks corre-
sponding to Hyades and Pleiades respectively are not clearly iden-
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Figure 12. Velocity-space distribution for the particles within 200 pc from (𝑅, 𝜙) = (8 kpc, 15◦) at 𝑡 = 9.29 Gyr. Left: The colours indicate number counts
in each bin. The bin size is 5 × 5 (km s−1)2. Right: Velocity-space distributions of the particles trapped in bar resonances. Cyan, yellow, green, magenta, and
orange dots indicate particles trapped in 2:1, 5:2, 3:1, 4:1, 5:1 OLRs, respectively.
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Figure 13. Same as Fig. 12 but for the particles within 200 pc from (𝑅, 𝜙) = (8.5 kpc, 50◦) at 𝑡 = 8.97 Gyr.

tified in the density maps of Fig. 12 or Fig. 13. The residual maps
in Fig. 14 highlight the differences of the velocity-space distribu-
tions between the observation and the simulation. The colours in
the maps show the 𝑞 − 𝑝 value at each of the points in the �̂�𝑅-�̂�𝜙
space. Here 𝑝 and 𝑞 are the probability distributions in the �̂�𝑅-�̂�𝜙
space derived from the Gaia and simulation data respectively. The
upper and lower panels are the residual maps for the velocity-space
distributions at (𝑅, 𝜙) = (8 kpc, 15◦) at 𝑡 = 9.29 Gyr (i.e., the left
panel in Fig. 12) and (𝑅, 𝜙) = (8.5 kpc, 50◦) at 𝑡 = 8.97 Gyr (i.e.,
the left panel in Fig. 13), respectively. We see the dense blue regions
from (�̂�𝑅 , �̂�𝜙) ' (0.2, 0.1) to (0,−0.1) in both maps. These are the
velocity-space substructures that are not reproduced by the 𝑁-body
model. This may be due to the resolution limitation of the simu-
lation. Another possibility is that they originate from mechanisms
other than bar resonances such as spiral arms (Quillen & Minchev
2005; Michtchenko et al. 2018b; Barros et al. 2020).

Another difference between the velocity-space distribution in the
observation and those in the simulation is the internal structure of
the Hercules stream. Gaia data shows a trimodal structure for the
Hercules stream, which is not seen in the simulation. The Hercules-
like streams in our simulation consist of the two resonances of 4:1
and 5:1 OLRs but do not have a third component.

5 SUMMARY

In this paper, we have quantitatively measured the similarities of
velocity-space distributions using the Kullback-Leibler divergence
(KLD). We have evaluated the KLDs between the 𝑣𝑅-𝑣𝜙 space dis-
tribution for the solar neighbourhood stars observed by the Gaia and
those in an 𝑁-body MW model simulated by Fujii et al. (2019). The
KLDs in the simulation show time evolution and spatial variation.
First, we have evaluated the KLDs at the three fixed points of

(𝑅, 𝜙) = (7 kpc, 25◦), (8 kpc, 25◦), and (9 kpc, 25◦). The time
evolution of theKLDs are linkedwith bar’s evolution. The highKLDs
(i.e. low similarities) at the beginning of the simulation reflect the
initial condition. They drop rapidly around the bar formation epoch
(𝑡 ' 3 Gyr). During the bar’s slowing down phase (3 Gyr . 𝑡 .
7 Gyr), they decrease with time. After the slowing down (𝑡 & 7 Gyr),
the KLDs are almost constant but show small fluctuations. The small
KLDs in this epoch indicate relatively high similarities. Especially,
the KLD at (𝑅, 𝜙) = (8 kpc, 25◦) is smaller than the other two
positions. In this position of the simulation, we frequently but not
always observe the velocity-space distributions similar to that of the
solar neighbourhood.
Next, we have investigated where in the disc we often detect

velocity-space distributions similar to that in the solar neighbour-
hood. Velocity-space distributions with sufficiently high similarities
(KLD < 0.2) are frequently found in the range of 𝑅 = 8–8.5 kpc.
The detection frequency at 𝑅 . 7 kpc and 𝑅 & 9 kpc are almost
zero. The detection frequency depends also on 𝜙. When 𝑅 is fixed,
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Figure 14. Residual maps of the simulated and observed �̂�𝑅-�̂�𝜙 space distri-
butions. 𝑝 and 𝑞 are the probability distributions in the observation and
the simulation, respectively, as defined in Section 2.4. Top: 𝑞 is evalu-
ated at (𝑅, 𝜙) = (8 kpc, 15◦) at 𝑡 = 9.29 Gyr. Bottom: 𝑞 is evaluated at
(𝑅, 𝜙) = (8.5 kpc, 50◦) at 𝑡 = 8.97 Gyr.

there is a specific angle at which the small KLDs are detected most
frequently. The peak angle moves in the direction of positive 𝜙 as
𝑅 increases. Especially at 𝑅 = 8.2 kpc, the peak is 𝜙 ' 30◦. This
𝑅 and 𝜙 are close to those of the Sun. Spiral arms also impact the
velocity-space distribution. The (𝑅, 𝜙) dependence of the KLD is
weaken when the spiral arms are strong. Furthermore, the velocity-
space distributions with small KLDs are more frequently detected at
the inter-arm regions than the arms regions.
We have investigated the relation between the bar resonances and

the substructures in the velocity distributions with small KLDs. We
have plotted the resonantly trapped particles in the velocity map
at (𝑅, 𝜙) = (8 kpc, 15◦) at 𝑡 = 9.29 Gyr. We have performed the
same analysis for the velocity map at (𝑅, 𝜙) = (8.5 kpc, 50◦) at
𝑡 = 8.97 Gyr. In both the cases, Hercules-like, horn-like, Sirius-like,
and hat-like substructure are confirmed. They are made from bar res-
onances. The Hercules-like streams consist of 4:1 OLR and 5:1 OLR.
Our previous study (Asano et al. 2020) obtained the same conclu-
sion from the analysis of the final snapshot only. Bar’s higher order
resonances as origin of the phase-space substructures are discussed
in other resent studies (e.g. Monari et al. 2017c; Hattori et al. 2019;
Monari et al. 2019a; Moreno et al. 2021; Trick 2022).
As the KLD’s oscillation suggests, the velocity-space distribu-

tion at a fixed position largely fluctuates. However, even in the non-
static model, the bar resonances have significant impact on the stellar
velocity-space distribution. Spiral arms may weaken the underlying
influence of the bar resonances and cause the fluctuation of the KLD.
This is consistent with the result that the detection frequency of the
small KLD is higher in the inter-arm regions than in the arm regions.
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APPENDIX A: POSITIONS OF SPIRAL ARMS

In 𝑁-body simulations of disc galaxies the spiral are not in steady
states. Instead they undergo repeated formation and destruction (Baba
et al. 2013). and determining their positions is not straightforward.
In this paper the Fourier decomposition of the disc surface density
is used to determine their position. In Fig. A1, the phase angles
𝜙𝑚 (𝑅) for 𝑚 = 2, 3, and 4 are overploted on the normalized density
maps of the 𝑅-𝜙 space. The overdense regions (i.e., spiral arms)
show complex morphologies. None of the Fourier modes completely
traces the overdensities. However, the 𝜙2 (𝑅) fits the high-density
regions relatively well and hence we use that to define the spiral
arms positions.
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Figure A1. The phase angles for the Fourier decomposition of the disc sur-
face density, shown at 𝑡 = 8.81, 9,29, and 10Gyr. Black, yellow, and red
dots represent the phase angles for the 𝑚 = 2, 3, and 4 modes, respec-
tively. The background colour represent the normalized surface densities,
Σ(𝑅, 𝜙)/Σ0 (𝑅) .
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