44 research outputs found

    Using diffusion tensor imaging to identify corticospinal tract projection patterns in children with unilateral spastic cerebral palsy.

    Get PDF
    AIM: To determine whether diffusion tensor imaging (DTI) can be an independent assessment for identifying the corticospinal tract (CST) projecting from the more-affected motor cortex in children with unilateral spastic cerebral palsy (CP). METHOD: Twenty children with unilateral spastic CP participated in this study (16 males, four females; mean age 9y 2mo [standard deviation (SD) 3y 2mo], Manual Ability Classification System [MACS] level I-III). We used DTI tractography to reconstruct the CST projecting from the more-affected motor cortex. We mapped the motor representation of the more-affected hand by stimulating the more- and the less-affected motor cortex measured with single-pulse transcranial magnetic stimulation (TMS). We then verified the presence or absence of the contralateral CST by comparing the TMS map and DTI tractography. Fisher's exact test was used to determine the association between findings of TMS and DTI. RESULTS: DTI tractography successfully identified the CST controlling the more-affected hand (sensitivity=82%, specificity=78%). INTERPRETATION: Contralateral CST projecting from the lesioned motor cortex assessed by DTI is consistent with findings of TMS mapping. Since CST connectivity may be predictive of response to certain upper extremity treatments, DTI-identified CST connectivity may potentially be valuable for determining such connectivity where TMS is unavailable or inadvisable for children with seizures.K08 NS073796 - NINDS NIH HHS; TL1 RR024158 - NCRR NIH HHS; K01 NS062116 - NINDS NIH HHS; UL1 RR024156 - NCRR NIH HHS; KL2 RR024157 - NCRR NIH HHS; R01 HD076436 - NICHD NIH HHSPublished versio

    Lifelong Fitness in Ambulatory Children and Adolescents with Cerebral Palsy I: Key Ingredients for Bone and Muscle Health

    Get PDF
    Physical activity of a sufficient amount and intensity is essential to health and the prevention of a sedentary lifestyle in all children as they transition into adolescence and adulthood. While fostering a fit lifestyle in all children can be challenging, it may be even more so for those with cerebral palsy (CP). Evidence suggests that bone and muscle health can improve with targeted exercise programs for children with CP. Yet, it is not clear how musculoskeletal improvements are sustained into adulthood. In this perspective, we introduce key ingredients and guidelines to promote bone and muscle health in ambulatory children with CP (GMFCS I–III), which could lay the foundation for sustained fitness and musculoskeletal health as they transition from childhood to adolescence and adulthood. First, one must consider crucial characteristics of the skeletal and muscular systems as well as key factors to augment bone and muscle integrity. Second, to build a better foundation, we must consider critical time periods and essential ingredients for programming. Finally, to foster the sustainability of a fit lifestyle, we must encourage commitment and self-initiated action while ensuring the attainment of skill acquisition and function. Thus, the overall objective of this perspective paper is to guide exercise programming and community implementation to truly alter lifelong fitness in persons with CP

    NeuroMeasure: A Software Package for Quantification of Cortical Motor Maps Using Frameless Stereotaxic Transcranial Magnetic Stimulation

    Get PDF
    The recent enhanced sophistication of non-invasive mapping of the human motor cortex using MRI-guided Transcranial Magnetic Stimulation (TMS) techniques, has not been matched by refinement of methods for generating maps from motor evoked potential (MEP) data, or in quantifying map features. This is despite continued interest in understanding cortical reorganization for natural adaptive processes such as skill learning, or in the case of motor recovery, such as after lesion affecting the corticospinal system. With the observation that TMS-MEP map calculation and quantification methods vary, and that no readily available commercial or free software exists, we sought to establish and make freely available a comprehensive software package that advances existing methods, and could be helpful to scientists and clinician-researchers. Therefore, we developed NeuroMeasure, an open source interactive software application for the analysis of TMS motor cortex mapping data collected from Nexstim® and BrainSight®, two commonly used neuronavigation platforms. NeuroMeasure features four key innovations designed to improve motor mapping analysis: de-dimensionalization of the mapping data, fitting a predictive model, reporting measurements to characterize the motor map, and comparing those measurements between datasets. This software provides a powerful and easy to use workflow for characterizing and comparing motor maps generated with neuronavigated TMS. The software can be downloaded on our github page: https://github.com/EdwardsLabNeuroSci/NeuroMeasureAimThis paper aims to describe a software platform for quantifying and comparing maps of the human primary motor cortex, using neuronavigated transcranial magnetic stimulation, for the purpose of studying brain plasticity in health and disease

    NeuroMeasure: A Software Package for Quantification of Cortical Motor Maps Using Frameless Stereotaxic Transcranial Magnetic Stimulation

    Full text link
    The recent enhanced sophistication of non-invasive mapping of the human motor cortex using MRI-guided Transcranial Magnetic Stimulation (TMS) techniques, has not been matched by refinement of methods for generating maps from motor evoked potential (MEP) data, or in quantifying map features. This is despite continued interest in understanding cortical reorganization for natural adaptive processes such as skill learning, or in the case of motor recovery, such as after lesion affecting the corticospinal system. With the observation that TMS-MEP map calculation and quantification methods vary, and that no readily available commercial or free software exists, we sought to establish and make freely available a comprehensive software package that advances existing methods, and could be helpful to scientists and clinician-researchers. Therefore, we developed NeuroMeasure, an open source interactive software application for the analysis of TMS motor cortex mapping data collected from Nexstim® and BrainSight®, two commonly used neuronavigation platforms. NeuroMeasure features four key innovations designed to improvemotor mapping analysis: de-dimensionalization of the mapping data, fitting a predictive model, reporting measurements to characterize the motor map, and comparing those measurements between datasets. This software provides a powerful and easy to use workflow for characterizing and comparing motor maps generated with neuronavigated TMS. The software can be downloaded on our github page: https://github.com/EdwardsLabNeuroSci/NeuroMeasure. AIM This paper aims to describe a software platform for quantifying and comparing maps of the human primarymotor cortex, using neuronavigated transcranialmagnetic stimulation, for the purpose of studying brain plasticity in health and diseas

    Neuromeasure: A software package for quantification of cortical motor maps using frameless stereotaxic transcranial magnetic stimulation

    Get PDF
    The recent enhanced sophistication of non-invasive mapping of the human motor cortex using MRI-guided Transcranial Magnetic Stimulation (TMS) techniques, has not been matched by refinement of methods for generating maps from motor evoked potential (MEP) data, or in quantifying map features. This is despite continued interest in understanding cortical reorganization for natural adaptive processes such as skill learning, or in the case of motor recovery, such as after lesion affecting the corticospinal system. With the observation that TMS-MEP map calculation and quantification methods vary, and that no readily available commercial or free software exists, we sought to establish and make freely available a comprehensive software package that advances existing methods, and could be helpful to scientists and clinician-researchers. Therefore, we developed NeuroMeasure, an open source interactive software application for the analysis of TMS motor cortex mapping data collected from Nexstim® and BrainSight®, two commonly used neuronavigation platforms. NeuroMeasure features four key innovations designed to improve motor mapping analysis: de-dimensionalization of the mapping data, fitting a predictive model, reporting measurements to characterize the motor map, and comparing those measurements between datasets. This software provides a powerful and easy to use workflow for characterizing and comparing motor maps generated with neuronavigated TMS. The software can be downloaded on our github page: https://github.com/EdwardsLabNeuroSci/NeuroMeasure Aim This paper aims to describe a software platform for quantifying and comparing maps of the human primary motor cortex, using neuronavigated transcranial magnetic stimulation, for the purpose of studying brain plasticity in health and disease

    Adults with Cerebral Palsy: Navigating the Complexities of Aging

    No full text
    The goal of this narrative review is to highlight the healthcare challenges faced by adults with cerebral palsy, including the management of long-term motor deficits, difficulty finding clinicians with expertise in these long-term impairments, and scarcity of rehabilitation options. Additionally, this narrative review seeks to examine potential methods for maintaining functional independence, promoting social integration, and community participation. Although the brain lesion that causes the movement disorder is non-progressive, the neurodevelopmental disorder worsens from secondary complications of existing sensory, motor, and cognitive impairments. Therefore, maintaining the continuum of care across one’s lifespan is of utmost importance. Advancements in healthcare services over the past decade have resulted in lower mortality rates and increased the average life expectancy of people with cerebral palsy. However, once they transition from adolescence to adulthood, limited federal and community resources, and health care professionals’ lack of expertise present significant obstacles to achieving quality healthcare and long-term benefits. This paper highlights the common impairments seen in adults with cerebral palsy. Additionally, it underscores the critical role of long-term healthcare and management to prevent functional decline and enhance quality of life across physical, cognitive, and social domains

    Anticipatory Motor Planning and Control of Grasp in Children with Unilateral Spastic Cerebral Palsy

    No full text
    Children with unilateral spastic cerebral palsy (USCP) have impairments in motor planning, impacting their ability to grasp objects. We examined the planning of digit position and force and the flexibility of the motor system in covarying these during object manipulation. Eleven children with a left hemisphere lesion (LHL), nine children with a right hemisphere lesion (RHL) and nine typically developing children (controls) participated in the study. Participants were instructed to use a precision grip with their dominant/less affected hand to lift and keep an object level, with either a left, centered or right center of mass (COM) location. Digit positions, forces, compensatory torque and object roll where measured. Although children with USCP generated a compensatory torque and modulated digit placement by lift-off, their index finger was either collinear or higher than the thumb, regardless of COM location, leading to larger rolls after lift-off especially for the RHL group. The findings suggest that while the kinetics of grasp control is intact, the kinematics of grasp control is impaired. This study adds to the understanding of the underlying mechanisms of anticipatory planning and control of grasp in children with USCP and may provide insights on how to improve hand function in children with USCP
    corecore