3,070 research outputs found

    Trajectory and propulsion characteristics of comet rendezvous opportunities

    Get PDF
    Trajectory and propulsion characteristics of spacecraft rendezvous mission opportunities to comets during 1975 to 199

    Pioneer Mars 1979 mission options

    Get PDF
    A preliminary investigation of lower cost Mars missions which perform useful exploration objectives after the Viking/75 mission was conducted. As a study guideline, it was assumed that significant cost savings would be realized by utilizing Pioneer hardware currently being developed for a pair of 1978 Venus missions. This in turn led to the additional constraint of a 1979 launch with the Atlas/Centaur launch vehicle which has been designated for the Pioneer Venus missions. Two concepts, using an orbiter bus platform, were identified which have both good science potential and mission simplicity indicative of lower cost. These are: (1) an aeronomy/geology orbiter, and (2) a remote sensing orbiter with a number of deployable surface penetrometers

    Comparative Analysis of the Major Polypeptides from Liver Gap Junctions and Lens Fiber Junctions

    Get PDF
    Gap junctions from rat liver and fiber junctions from bovine lens have similar septilaminar profiles when examined by thin-section electron microscopy and differ only slightly with respect to the packing of intramembrane particles in freeze-fracture images. These similarities have often led to lens fiber junctions being referred to as gap junctions. Junctions from both sources were isolated as enriched subcellular fractions and their major polypeptide components compared biochemically and immunochemically. The major liver gap junction polypeptide has an apparent molecular weight of 27,000, while a 25,000-dalton polypeptide is the major component of lens fiber junctions. The two polypeptides are not homologous when compared by partial peptide mapping in SDS. In addition, there is not detectable antigenic similarity between the two polypeptides by immunochemical criteria using antibodies to the 25,000-dalton lens fiber junction polypeptide. Thus, in spite of the ultrastructural similarities, the gap junction and the lens fiber junction are comprised of distinctly different polypeptides, suggesting that the lens fiber junction contains a unique gene product and potentially different physiological properties

    Multipole structure of current vectors in curved spacetime

    Get PDF
    A method is presented which allows the exact construction of conserved (i.e. divergence-free) current vectors from appropriate sets of multipole moments. Physically, such objects may be taken to represent the flux of particles or electric charge inside some classical extended body. Several applications are discussed. In particular, it is shown how to easily write down the class of all smooth and spatially-bounded currents with a given total charge. This implicitly provides restrictions on the moments arising from the smoothness of physically reasonable vector fields. We also show that requiring all of the moments to be constant in an appropriate sense is often impossible; likely limiting the applicability of the Ehlers-Rudolph-Dixon notion of quasirigid motion. A simple condition is also derived that allows currents to exist in two different spacetimes with identical sets of multipole moments (in a natural sense).Comment: 13 pages, minor changes, accepted to J. Math. Phy

    Mars surface sample return missions via solar electric propulsion

    Get PDF
    The characteristics and capabilities are described of solar electric propulsion (SEP) for performing Mars Surface Sample Return (MSSR) missions. The scope of the study emphasizes trajectory/payload analysis and the comparison of mission/system tradeoff options. The MSSR mission is examined only for the 1981-82 launch opportunity. Several other study constraints which bear directly on the results obtained are: (1) return samples in the range 5-25 kg, (2) use of lifting (offset C.G.) atmospheric entry at Mars which allows a low ratio (1.25) of entry weight to landed weight, and (3) rendezvous and docking in Mars orbit. Major results of the study are presented as performance curves of earth departure mass versus sample size for a number of different mission/system options. These options represent a spectrum of trip time, launch vehicle capability, combinations of low-thrust and ballistic maneuvers, chemical retro type, and earth recovery mode

    Linear instability criteria for ideal fluid flows subject to two subclasses of perturbations

    Full text link
    In this paper we examine the linear stability of equilibrium solutions to incompressible Euler's equation in 2- and 3-dimensions. The space of perturbations is split into two classes - those that preserve the topology of vortex lines and those in the corresponding factor space. This classification of perturbations arises naturally from the geometric structure of hydrodynamics; our first class of perturbations is the tangent space to the co-adjoint orbit. Instability criteria for equilibrium solutions are established in the form of lower bounds for the essential spectral radius of the linear evolution operator restricted to each class of perturbation.Comment: 29 page

    Support varieties for selfinjective algebras

    Full text link
    Support varieties for any finite dimensional algebra over a field were introduced by Snashall-Solberg using graded subalgebras of the Hochschild cohomology. We mainly study these varieties for selfinjective algebras under appropriate finite generation hypotheses. Then many of the standard results from the theory of support varieties for finite groups generalize to this situation. In particular, the complexity of the module equals the dimension of its corresponding variety, all closed homogeneous varieties occur as the variety of some module, the variety of an indecomposable module is connected, periodic modules are lines and for symmetric algebras a generalization of Webb's theorem is true

    Molecular evidence for the clonal origin of blast crisis in chronic myeloid leukaemia.

    Get PDF
    Cytogenetic and enzymatic studies have shown that chronic myeloid leukemia (CML) represents the clonal proliferation of a pluripotent stem cell. The Philadelphia chromosome (Ph') is the characteristic karyotypic abnormality seen in this disease, although the exact role of this clonal marker in the pathogenesis of CML is uncertain. At a molecular level, the Ph' has recently been shown to represent the translocation of c-abl to a limited (breakpoint cluster region, bcr) on chromosome 22. We have used probes for the bcr gene to obtain molecular evidence for the clonal origin of blast crisis in 2 patient with CML. In both cases, the first with myeloid and the second with lymphoid blast crisis, there was rearrangement of the bcr gene. The patterns of rearrangement varied between patients but were identical when comparing acute and chronic phases within the same individual. As the Ph' translocation is thought to represent a random recombination event these data not only provide further evidence for the clonal origin of blast crisis in CML, but also suggest that in the second patient this translocation event had already occurred at the pluripotent stem cell

    Gravitational waves about curved backgrounds: a consistency analysis in de Sitter spacetime

    Get PDF
    Gravitational waves are considered as metric perturbations about a curved background metric, rather than the flat Minkowski metric since several situations of physical interest can be discussed by this generalization. In this case, when the de Donder gauge is imposed, its preservation under infinitesimal spacetime diffeomorphisms is guaranteed if and only if the associated covector is ruled by a second-order hyperbolic operator which is the classical counterpart of the ghost operator in quantum gravity. In such a wave equation, the Ricci term has opposite sign with respect to the wave equation for Maxwell theory in the Lorenz gauge. We are, nevertheless, able to relate the solutions of the two problems, and the algorithm is applied to the case when the curved background geometry is the de Sitter spacetime. Such vector wave equations are studied in two different ways: i) an integral representation, ii) through a solution by factorization of the hyperbolic equation. The latter method is extended to the wave equation of metric perturbations in the de Sitter spacetime. This approach is a step towards a general discussion of gravitational waves in the de Sitter spacetime and might assume relevance in cosmology in order to study the stochastic background emerging from inflation.Comment: 17 pages. Misprints amended in Eqs. 50, 54, 55, 75, 7

    A family of diameter-based eigenvalue bounds for quantum graphs

    Full text link
    We establish a sharp lower bound on the first non-trivial eigenvalue of the Laplacian on a metric graph equipped with natural (i.e., continuity and Kirchhoff) vertex conditions in terms of the diameter and the total length of the graph. This extends a result of, and resolves an open problem from, [J. B. Kennedy, P. Kurasov, G. Malenov\'a and D. Mugnolo, Ann. Henri Poincar\'e 17 (2016), 2439--2473, Section 7.2], and also complements an analogous lower bound for the corresponding eigenvalue of the combinatorial Laplacian on a discrete graph. We also give a family of corresponding lower bounds for the higher eigenvalues under the assumption that the total length of the graph is sufficiently large compared with its diameter. These inequalities are sharp in the case of trees.Comment: Substantial revision of v1. The main result, originally for the first eigenvalue, has been generalised to the higher ones. The title has been changed and the proofs substantially reorganised to reflect the new result, and a section containing concluding remarks has been adde
    corecore