65 research outputs found

    Local stability of a gravitating filament: a dispersion relation

    Full text link
    Filamentary structures are ubiquitous in astrophysics and are observed at various scales. On a cosmological scale, matter is usually distributed along filaments, and filaments are also typical features of the interstellar medium. Within a cosmic filament, matter can contract and form galaxies, whereas an interstellar gas filament can clump into a series of bead-like structures which can then turn into stars. To investigate the growth of such instabilities, we derive a local dispersion relation for an idealized self-gravitating filament, and study some of its properties. Our idealized picture consists of an infinite self-gravitating and rotating cylinder with pressure and density related by a polytropic equation of state. We assume no specific density distribution, treat matter as a fluid, and use hydrodynamics to derive the linearized equations that govern the local perturbations. We obtain a dispersion relation for axisymmetric perturbations and study its properties in the (k_R, k_z) phase space, where k_R and k_z are respectively the radial and longitudinal wavenumbers. While the boundary between the stable and unstable regimes is symmetrical in k_R and k_z and analogous to the Jeans criterion, the most unstable mode displays an asymmetry that could constrain the shape of the structures that form within the filament. Here the results are applied to a fiducial interstellar filament, but could be extended for more astrophysical systems such as cosmological filaments and tidal tails.Comment: 8 pages, 1 figure, published in A&

    Halo heating from fluctuating gas in a model dwarf

    Full text link
    The cold dark matter (CDM) structure formation scenario faces challenges on (sub)galactic scales, central among them being the `cusp-core' problem. A known remedy, driving CDM out of galactic centres, invokes interactions with baryons, through fluctuations in the gravitational potential arising from feedback or orbiting clumps of gas or stars. Here we interpret core formation in a hydrodynamic simulation in terms of a theoretical formulation, which may be considered a generalisation of Chandrasekhar's theory of two body relaxation to the case when the density fluctuations do not arise from white noise; it presents a simple characterisation of the effects of complex hydrodynamics and `subgrid physics'. The power spectrum of gaseous fluctuations is found to follow a power law over a range of scales, appropriate for a fully turbulent compressible medium. The potential fluctuations leading to core formation are nearly normally distributed, which allows for the energy transfer leading to core formation to be described as a standard diffusion process, initially increasing the velocity dispersion of test particles as in Chandrasekhar's theory. We calculate the energy transfer from the fluctuating gas to the halo and find it consistent with theoretical expectations. We also examine how the initial kinetic energy input to halo particles is redistributed to form a core. The temporal mass decrease inside the forming core may be fit by an exponential form; a simple prescription based on our model associates the characteristic timescale with an energy relaxation time. We compare the resulting theoretical density distribution with that in the simulation.Comment: 15 pages, 17 figures. Comments welcome

    From cusps to cores: a stochastic model

    Full text link
    The cold dark matter model of structure formation faces apparent problems on galactic scales. Several threads point to excessive halo concentration, including central densities that rise too steeply with decreasing radius. Yet, random fluctuations in the gaseous component can 'heat' the centres of haloes, decreasing their densities. We present a theoretical model deriving this effect from first principles: stochastic variations in the gas density are converted into potential fluctuations that act on the dark matter; the associated force correlation function is calculated and the corresponding stochastic equation solved. Assuming a power law spectrum of fluctuations with maximal and minimal cutoff scales, we derive the velocity dispersion imparted to the halo particles and the relevant relaxation time. We further perform numerical simulations, with fluctuations realised as a Gaussian random field, which confirm the formation of a core within a timescale comparable to that derived analytically. Non-radial collective modes enhance the energy transport process that erases the cusp, though the parametrisations of the analytical model persist. In our model, the dominant contribution to the dynamical coupling driving the cusp-core transformation comes from the largest scale fluctuations. Yet, the efficiency of the transformation is independent of the value of the largest scale and depends weakly (linearly) on the power law exponent; it effectively depends on two parameters: the gas mass fraction and the normalisation of the power spectrum. This suggests that cusp-core transformations observed in hydrodynamic simulations of galaxy formation may be understood and parametrised in simple terms, the physical and numerical complexities of the various implementations notwithstanding.Comment: Minor revisions to match version to appear in MNRAS; Section~2.3 largely rewritten for clarit

    Wet Compaction to a Blue Nugget: a Critical Phase in Galaxy Evolution

    Full text link
    We utilize high-resolution cosmological simulations to reveal that high-redshift galaxies tend to undergo a robust `wet compaction' event when near a `golden' stellar mass of 1010M\sim 10^{10} M_{\odot}. This is a gaseous shrinkage to a compact star-forming phase, a `blue nugget' (BN), followed by central quenching of star formation to a compact passive stellar bulge, a `red nugget' (RN), and a buildup of an extended gaseous disc and ring. Such nuggets are observed at cosmic noon and seed today's early-type galaxies. The compaction is triggered by a drastic loss of angular momentum due to, e.g., wet mergers, counter-rotating cold streams, or violent disc instability. The BN phase marks drastic transitions in the galaxy structural, compositional and kinematic properties. The transitions are from star-forming to quenched inside-out, from diffuse to compact with an extended disc-ring and a stellar envelope, from dark matter to baryon central dominance, from prolate to oblate stellar shape, from pressure to rotation support, from low to high metallicity, and from supernova to AGN feedback. The central black hole growth, first suppressed by supernova feedback when below the golden mass, is boosted by the compaction, and the black hole keeps growing once the halo is massive enough to lock in the supernova ejecta.Comment: 33 pages, 26 figures in the main body (49 pages, 45 figures including appendix

    Evolution of the Gas Mass Fraction of Progenitors to Today's Massive Galaxies: ALMA Observations in the CANDELS GOODS-S Field

    Full text link
    We present an ALMA survey of dust continuum emission in a sample of 70 galaxies in the redshift range z=2-5 selected from the CANDELS GOODS-S field. Multi-Epoch Abundance Matching (MEAM) is used to define potential progenitors of a z = 0 galaxy of stellar mass 1.5 10^11 M_sun. Gas masses are derived from the 850um luminosity. Ancillary data from the CANDELS GOODS-S survey are used to derive the gas mass fractions. The results at z<=3 are mostly in accord with expectations: The detection rates are 75% for the z=2 redshift bin, 50% for the z=3 bin and 0% for z>=4. The average gas mass fraction for the detected z=2 galaxies is f_gas = 0.55+/-0.12 and f_gas = 0.62+/-0.15 for the z=3 sample. This agrees with expectations for galaxies on the star-forming main sequence, and shows that gas fractions have decreased at a roughly constant rate from z=3 to z=0. Stacked images of the galaxies not detected with ALMA give upper limits to f_gas of <0.08 and <0.15, for the z=2 and z=3 redshift bins. None of our galaxies in the z=4 and z=5 sample are detected and the upper limit from stacked images, corrected for low metallicity, is f_gas<0.66. We do not think that lower gas-phase metallicities can entirely explain the lower dust luminosities. We briefly consider the possibility of accretion of very low-metallicity gas to explain the absence of detectable dust emission in our galaxies at z>4.Comment: Accepted for publication in the Astrophysical Journal. 33 pages; 11 figure

    Disk galaxies are self-similar: the universality of the HI-to-Halo mass ratio for isolated disks

    Full text link
    Observed scaling relations in galaxies between baryons and dark matter global properties are key to shed light on the process of galaxy formation and on the nature of dark matter. Here, we study the scaling relation between the neutral hydrogen (HI) and dark matter mass in isolated rotationally-supported disk galaxies at low redshift. We first show that state-of-the-art galaxy formation simulations predict that the HI-to-dark halo mass ratio decreases with stellar mass for the most massive disk galaxies. We then infer dark matter halo masses from high-quality rotation curve data for isolated disk galaxies in the local Universe, and report on the actual universality of the HI-to-dark halo mass ratio for these observed galaxies. This scaling relation holds for disks spanning a range of 4 orders of magnitude in stellar mass and 3 orders of magnitude in surface brightness. Accounting for the diversity of rotation curve shapes in our observational fits decreases the scatter of the HI-to-dark halo mass ratio while keeping it constant. This finding extends the previously reported discrepancy for the stellar-to-halo mass relation of massive disk galaxies within galaxy formation simulations to the realm of neutral atomic gas. Our result reveals that isolated galaxies with regularly rotating extended HI disks are surprisingly self-similar up to high masses, which hints at mass-independent self-regulation mechanisms that have yet to be fully understood.Comment: 14 pages, 4 figures. Accepted for publication in ApJ

    Emergence and cosmic evolution of the Kennicutt-Schmidt relation driven by interstellar turbulence

    Full text link
    The scaling relations between the gas content and star formation rate of galaxies provide useful insights into processes governing their formation and evolution. We investigate the emergence and the physical drivers of the global Kennicutt-Schmidt (KS) relation at 0.25z40.25 \leq z \leq 4 in the cosmological hydrodynamic simulation NewHorizon capturing the evolution of a few hundred galaxies with a resolution of \sim 40 pc. The details of this relation vary strongly with the stellar mass of galaxies and the redshift. A power-law relation ΣSFRΣgasa\Sigma_{\rm SFR} \propto \Sigma_{\rm gas}^{a} with a1.4a \approx 1.4, like that found empirically, emerges at z23z \approx 2 - 3 for the most massive half of the galaxy population. However, no such convergence is found in the lower-mass galaxies, for which the relation gets shallower with decreasing redshift. At the galactic scale, the star formation activity correlates with the level of turbulence of the interstellar medium, quantified by the Mach number, rather than with the gas fraction (neutral or molecular), confirming previous works. With decreasing redshift, the number of outliers with short depletion times diminishes, reducing the scatter of the KS relation, while the overall population of galaxies shifts toward low densities. Using pc-scale star formation models calibrated with local Universe physics, our results demonstrate that the cosmological evolution of the environmental and intrinsic conditions conspire to converge towards a significant and detectable imprint in galactic-scale observables, in their scaling relations, and in their reduced scatter.Comment: 26 pages, 22 figure
    corecore