210 research outputs found

    Captures of stars by a massive black hole: Investigations in numerical stellar dynamics

    Full text link
    Among the astrophysical systems targeted by LISA, stars on relativistic orbits around massive black holes (MBHs) are particularly promising sources. Unfortunately, the prediction for the number and characteristics of such sources suffers from many uncertainties. Stellar dynamical Monte Carlo simulations of the evolution of galactic nucleus models allow more realistic estimates of these quantities. The computations presented here strongly suggest that the closest such extreme mass-ratio binary to be detected by LISA could be a low-mass MS star (MSS) orbiting the MBH at the center of our Milky Way. Only compact stars contribute to the expected detections from other galaxies because MSSs are disrupted by tidal forces too early.Comment: 4 pages, 2 figures, to appear in the proceedings of "The Astrophysics of Gravitational Wave Sources", a workshop held at the University of Maryland, April 24-26, 200

    A new Monte Carlo code for star cluster simulations: II. Central black hole and stellar collisions

    Get PDF
    We have recently written a new code to simulate the long term evolution of spherical clusters of stars. It is based on the pioneering Monte Carlo scheme proposed by Henon in the 70's. Our code has been devised in the specific goal to treat dense galactic nuclei. After having described how we treat relaxation in a first paper, we go on and include further physical ingredients that are mostly pertinent to galactic nuclei, namely the presence of a central (growing) black hole (BH) and collisions between MS stars. Stars that venture too close to the BH are destroyed by the tidal field. This process is a channel to feed the BH and a way to produce accretion flares. Collisions between stars have often been proposed as another mechanism to drive stellar matter into the central BH. To get the best handle on the role of this process in galactic nuclei, we include it with unpreceded realism through the use of a set of more than 10000 collision simulations carried out with a SPH (Smoothed Particle Hydrodynamics) code. Stellar evolution has also been introduced in a simple way, similar to what has been done in previous dynamical simulations of galactic nuclei. To ensure that this physics is correctly simulated, we realized a variety of tests whose results are reported here. This unique code, featuring most important physical processes, allows million particle simulations, spanning a Hubble time, in a few CPU days on standard personal computers and provides a wealth of data only rivalized by N-body simulations.Comment: 32 pages, 19 figures. Slightly shortened and clarified following referee's suggestions. Accepted for publication in A&A. Version with high quality figures available at http://obswww.unige.ch/~freitag/papers/article_MC2.ps.g

    Gravitational waves from eccentric intermediate-mass black hole binaries

    Get PDF
    If binary intermediate-mass black holes (IMBHs; with masses between 100 and 10^4 \Msun) form in dense stellar clusters, their inspiral will be detectable with the planned Laser Interferometer Space Antenna (LISA) out to several Gpc. Here we present a study of the dynamical evolution of such binaries using a combination of direct NN-body techniques (when the binaries are well separated) and three-body relativistic scattering experiments (when the binaries are tight enough that interactions with stars occur one at a time). We find that for reasonable IMBH masses there is only a mild effect on the structure of the surrounding cluster even though the binary binding energy can exceed the binding energy of the cluster. We demonstrate that, contrary to standard assumptions, the eccentricity in the LISA band can be in {\em some} cases as large as ∼0.2−0.3\sim 0.2 - 0.3 and that it induces a measurable phase difference from circular binaries in the last year before merger. We also show that, even though energy input from the binary decreases the density of the core and slows down interactions, the total time to coalescence is short enough (typically less than a hundred million years) that such mergers will be unique snapshots of clustered star formation.Comment: Accepted for publication by ApJ Lett

    Runaway collisions in young star clusters. II. Numerical results

    Full text link
    We present a new study of the collisional runaway scenario to form an intermediate-mass black hole (IMBH, MBH > 100 Msun) at the centre of a young, compact stellar cluster. The first phase is the formation of a very dense central core of massive stars (Mstar =~ 30-120 Msun) through mass segregation and gravothermal collapse. Previous work established the conditions for this to happen before the massive stars evolve off the main sequence (MS). In this and a companion paper, we investigate the next stage by implementing direct collisions between stars. Using a Monte Carlo stellar dynamics code, we follow the core collapse and subsequent collisional phase in more than 100 models with varying cluster mass, size, and initial concentration. Collisions are treated either as ideal, ``sticky-sphere'' mergers or using realistic prescriptions derived from 3-D hydrodynamics computations. In all cases for which the core collapse happens in less than the MS lifetime of massive stars (~3 Myr), we obtain the growth of a single very massive star (VMS, Mstar =~ 400-4000 Msun) through a runaway sequence of mergers. Mass loss from collisions, even for velocity dispersions as high as sigma1D ~ 1000 km/s, does not prevent the runaway. The region of cluster parameter space leading to runaway is even more extended than predicted in previous work because, in clusters with sigma1D > 300 km/s, collisions accelerate (and, in extreme cases, drive) core collapse. Although the VMS grows rapidly to > 1000 Msun in models exhibiting runaway, we cannot predict accurately its final mass. This is because the termination of the runaway process must eventually be determined by a complex interplay between stellar dynamics, hydrodynamics, and the stellar evolution of the VMS. [abridged]Comment: 23 pages, 24 figures. For publication in MNRAS. Paper revised to follow requests and suggestions of referee. Companion paper to Freitag, Rasio & Baumgardt 200

    A comprehensive set of simulations of high-velocity collisions between main-sequence stars

    Get PDF
    We report on a very large set of simulations of collisions between two main-sequence (MS) stars. These computations were carried out with the smoothed particle hydrodynamics method. Realistic stellar structure models for evolved MS stars were used. In order to sample an extended domain of initial parameters space (masses of the stars, relative velocity and impact parameter), more than 14 000 simulations were carried out. We considered stellar masses ranging between 0.1 and 75 M⊙ and relative velocities up to a few thousand km s−1. To limit the computational burden, a resolution of 1000-32 000 particles per star was used. The primary goal of this study was to build a complete data base from which the result of any collision can be interpolated. This allows us to incorporate the effects of stellar collisions with an unprecedented level of realism into dynamical simulations of galactic nuclei and other dense stellar clusters. We make the data describing the initial condition and outcome (mass and energy loss, angle of deflection) of all our simulations available on the Internet. We find that the outcome of collisions depends sensitively on the stellar structure and that, in most cases, using polytropic models is inappropriate. Published fitting formulae for the collision outcomes, established from a limited set of collisions, prove of limited use because they do not allow robust extrapolation to other stellar structures or relative velocitie

    Gravitational waves from stars orbiting the Sagittarius A* black hole

    Full text link
    One of the main astrophysical processes leading to strong emission of gravitational waves to be detected by the future space-borne interferometer LISA is the capture of a compact star by a black hole with a mass of a few million solar masses in the center of a galaxy. In previous studies, main sequence stars were thought not to contribute because they suffer from early tidal disruption. Here we show that, according to our simulations of the stellar dynamics of the Sgr A* cluster, there must be one to a few low-mass main sequence stars sufficiently bound to the central Galactic black hole to be conspicuous sources in LISA observations. The probability that a white dwarf may be detectable is lower than 0.5 and, in spite of mass segregation, detection of a captured neutron star or stellar black hole in the center of the Milky Way is highly unlikely.Comment: 5 pages, 3 figures, accepted for publication in ApJL, new version shortened to fit in 4 journal pages. Slightly longer version available at http://obswww.unige.ch/~freitag/papers/article_SgrA_long.ps.g

    Sowing the seeds of massive black holes in small galaxies: Young clusters as the building blocks of Ultra-Compact-Dwarf Galaxies

    Get PDF
    Interacting galaxies often have complexes of hundreds of young stellar clusters of individual masses ∼104−6 M⊙\sim 10^{4-6}~M_\odot in regions that are a few hundred parsecs across. These cluster complexes interact dynamically, and their coalescence is a candidate for the origin of some ultracompact dwarf galaxies (UCDs). Individual clusters with short relaxation times are candidates for the production of intermediate-mass black holes of a few hundred solar masses, via runaway stellar collisions prior to the first supernovae in a cluster. It is therefore possible that a cluster complex hosts multiple intermediate-mass black holes that may be ejected from their individual clusters due to mergers or binary processes, but bound to the complex as a whole. Here we explore the dynamical interaction between initially free-flying massive black holes and clusters in an evolving cluster complex. We find that, after hitting some clusters, it is plausible that the massive black hole will be captured in an ultracompact dwarf forming near the center of the complex. In the process, the hole typically triggers electromagnetic flares via stellar disruptions, and is also likely to be a prominent source of gravitational radiation for the advanced ground-based detectors LIGO and VIRGO. We also discuss other implications of this scenario, notably that the central black hole could be considerably larger than expected in other formation scenarios for ultracompact dwarfs.Comment: 15 pages, published in ApJ; for movies, please visit http://members.aei.mpg.de/amaro-seoane/ultra-compact-dwarf-galaxie
    • …
    corecore