697 research outputs found
An investigation into the effect of temperature on the leaching of copper-matte
A study was carried out to determine the influence of the temperature and the reaction involved on the leaching of coppermatte. Copper (Cu) bearing matte from Impala Refinery (Pty) Ltd was used in the investigation. The experiments were conducted in a leaching cell submerged in a water bath, with ammonia concentrations (leaching solution) of 3.0M, temperature of 50°C, 60°C and 70°C, pH of 11 and for a time period of 130 minutes. Leaching tests indicated that Cu recovery increased in the temperature range 50°C - 60°C, however at a temperature of 70°C Cu recovery decreases because of cementation process as nickel displace copper. The shrinking core model was used to determine if the leaching process was diffusion controlled, or chemical controlled, or even mixed controlled. It was found that the leaching process could not be determined using the shrinking core model due to the cementation process of Cu. It was concluded that an increase in temperature results in an increase in the Cu recovery however the temperature should not be too high as cementation process increase with increasing temperature
Using simulation to understand the structure and properties of hydrated amorphous calcium carbonate
We report results from studies using four different protocols to prepare hydrated amorphous calcium carbonate, ranging from random initial structures to melting hydrated mineral structures. All protocols give good agreement with experimental X-ray structure factors. However, the thermodynamic properties, ion coordination environments, and distribution of water for the structures produced by the protocols show statistically significant variation depending on the protocols used. We discuss the diffusivity of water through the various structures and its relation to experiments. We show that one protocol (based on melting ikaite) gives a structure where the water is mobile, due to the presence of porosity in the amorphous structure. We conclude that our models of hydrated amorphous calcium carbonate do give a range of behaviour that resembles that observed experimentally, although the variation is less marked in the simulations than in experiments
Diagnostic criteria for initial orthostatic hypotension:a narrative review
Abnormalities in orthostatic blood pressure changes upon active standing are associated with morbidity, mortality, and reduced quality of life. However, over the last decade, several population-based cohort studies have reported a remarkably high prevalence (between 25 and 70%) of initial orthostatic hypotension (IOH) among elderly individuals. This has raised the question as to whether the orthostatic blood pressure patterns in these community-dwelling elderly should truly be considered as pathological. If not, redefining of the systolic cutoff values for IOH (i.e., a value â„ 40Â mmHg in systolic blood pressure in the first 15Â s after standing up) might be necessary to differ between normal aging and true pathology. Therefore, in this narrative review, we provide a critical analysis of the current reference values for the changes in systolic BP in the first 60Â s after standing up and discuss how these values should be applied to large population studies. We will address factors that influence the magnitude of the systolic blood pressure changes following active standing and the importance of standardization of the stand-up test, which is a prerequisite for quantitative, between-subject comparisons of the postural hemodynamic response
Evaluating Interaction of Cord Blood Hematopoietic Stem/Progenitor Cells with Functionally Integrated Three-Dimensional Microenvironments
Despite advances in ex vivo expansion of cord blood-derived hematopoietic stem/progenitor cells (CB-HSPC), challenges still remain regarding the ability to obtain, from a single unit, sufficient numbers of cells to treat an adolescent or adult patient. We and others have shown that CB-HSPC can be expanded ex vivo in two-dimensional (2D) cultures, but the absolute percentage of the more primitive stem cells decreases with time. During development, the fetal liver is the main site of HSPC expansion. Therefore, here we investigated, in vitro, the outcome of interactions of primitive HSPC with surrogate fetal liver environments. We compared bioengineered liver constructs made from a natural three-dimensional-liver-extracellular-matrix (3D-ECM) seeded with hepatoblasts, fetal liver-derived (LvSt), or bone marrow-derived stromal cells, to their respective 2D culture counterparts. We showed that the inclusion of cellular components within the 3D-ECM scaffolds was necessary for maintenance of HSPC viability in culture, and that irrespective of the microenvironment used, the 3D-ECM structures led to the maintenance of a more primitive subpopulation of HSPC, as determined by flow cytometry and colony forming assays. In addition, we showed that the timing and extent of expansion depends upon the biological component used, with LvSt providing the optimal balance between preservation of primitive CB HSPC and cellular differentiation. Stem Cells Translational Medicine 2018;7:271â282
Effect of Chaotic Noise on Multistable Systems
In a recent letter [Phys.Rev.Lett. {\bf 30}, 3269 (1995), chao-dyn/9510011],
we reported that a macroscopic chaotic determinism emerges in a multistable
system: the unidirectional motion of a dissipative particle subject to an
apparently symmetric chaotic noise occurs even if the particle is in a
spatially symmetric potential. In this paper, we study the global dynamics of a
dissipative particle by investigating the barrier crossing probability of the
particle between two basins of the multistable potential. We derive
analytically an expression of the barrier crossing probability of the particle
subject to a chaotic noise generated by a general piecewise linear map. We also
show that the obtained analytical barrier crossing probability is applicable to
a chaotic noise generated not only by a piecewise linear map with a uniform
invariant density but also by a non-piecewise linear map with non-uniform
invariant density. We claim, from the viewpoint of the noise induced motion in
a multistable system, that chaotic noise is a first realization of the effect
of {\em dynamical asymmetry} of general noise which induces the symmetry
breaking dynamics.Comment: 14 pages, 9 figures, to appear in Phys.Rev.
Modified gravity without dark matter
On an empirical level, the most successful alternative to dark matter in
bound gravitational systems is the modified Newtonian dynamics, or MOND,
proposed by Milgrom. Here I discuss the attempts to formulate MOND as a
modification of General Relativity. I begin with a summary of the
phenomenological successes of MOND and then discuss the various covariant
theories that have been proposed as a basis for the idea. I show why these
proposals have led inevitably to a multi-field theory. I describe in some
detail TeVeS, the tensor-vector-scalar theory proposed by Bekenstein, and
discuss its successes and shortcomings. This lecture is primarily pedagogical
and directed to those with some, but not a deep, background in General
RelativityComment: 28 pages, 10 figures, lecture given at Third Aegean Summer School,
The Invisible Universe: Dark Matter and Dark Energy, minor errors corrected,
references update
âCytology-on-a-chipâ based sensors for monitoring of potentially malignant oral lesions
Despite significant advances in surgical procedures and treatment, long-term prognosis for patients with oral cancer remains poor, with survival rates among the lowest of major cancers. Better methods are desperately needed to identify potential malignancies early when treatments are more effective. Objective To develop robust classification models from cytology-on-a-chip measurements that mirror diagnostic performance of gold standard approach involving tissue biopsy. Materials and methods Measurements were recorded from 714 prospectively recruited patients with suspicious lesions across 6 diagnostic categories (each confirmed by tissue biopsy -histopathology) using a powerful new âcytology-on-a-chipâ approach capable of executing high content analysis at a single cell level. Over 200 cellular features related to biomarker expression, nuclear parameters and cellular morphology were recorded per cell. By cataloging an average of 2000 cells per patient, these efforts resulted in nearly 13 million indexed objects. Results Binary âlow-riskâ/âhigh-riskâ models yielded AUC values of 0.88 and 0.84 for training and validation models, respectively, with an accompanying difference in sensitivity + specificity of 6.2%. In terms of accuracy, this model accurately predicted the correct diagnosis approximately 70% of the time, compared to the 69% initial agreement rate of the pool of expert pathologists. Key parameters identified in these models included cell circularity, Ki67 and EGFR expression, nuclear-cytoplasmic ratio, nuclear area, and cell area. Conclusions This chip-based approach yields objective data that can be leveraged for diagnosis and management of patients with PMOL as well as uncovering new molecular-level insights behind cytological differences across the OED spectrum
Distributed flow optimization and cascading effects in weighted complex networks
We investigate the effect of a specific edge weighting scheme on distributed flow efficiency and robustness to cascading
failures in scale-free networks. In particular, we analyze a simple, yet
fundamental distributed flow model: current flow in random resistor networks.
By the tuning of control parameter and by considering two general cases
of relative node processing capabilities as well as the effect of bandwidth, we
show the dependence of transport efficiency upon the correlations between the
topology and weights. By studying the severity of cascades for different
control parameter , we find that network resilience to cascading
overloads and network throughput is optimal for the same value of over
the range of node capacities and available bandwidth
Interobserver agreement in dysplasia grading: toward an enhanced gold standard for clinical pathology trials
Objective: Interobserver agreement in the context of oral epithelial dysplasia (OED) grading has been notoriously unreliable and can impose barriers for developing new molecular markers and diagnostic technologies. This paper aimed to report the details of a 3-stage histopathology review and adjudication process with the goal of achieving a consensus histopathologic diagnosis of each biopsy. Study Design: Two adjacent serial histologic sections of oral lesions from 846 patients were independently scored by 2 different pathologists from a pool of 4. In instances where the original 2 pathologists disagreed, a third, independent adjudicating pathologist conducted a review of both sections. If a majority agreement was not achieved, the third stage involved a face-to-face consensus review. Results: Individual pathologist pair Îș values ranged from 0.251 to 0.706 (fair-good) before the 3-stage review process. During the initial review phase, the 2 pathologists agreed on a diagnosis for 69.9% of the cases. After the adjudication review by a third pathologist, an additional 22.8% of cases were given a consensus diagnosis (agreement of 2 out of 3 pathologists). After the face-to-face review, the remaining 7.3% of cases had a consensus diagnosis. Conclusions: The use of the defined protocol resulted in a substantial increase (30%) in diagnostic agreement and has the potential to improve the level of agreement for establishing gold standards for studies based on histopathologic diagnosis
- âŠ